L7a1
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L7a1 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7^2_6} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L7a1's Link Presentations]
| Planar diagram presentation | X6172 X12,7,13,8 X4,13,1,14 X10,6,11,5 X8493 X14,10,5,9 X2,12,3,11 |
| Gauss code | {1, -7, 5, -3}, {4, -1, 2, -5, 6, -4, 7, -2, 3, -6} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(u-1) (v-1) \left(v^2-v+1\right)}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{9/2}+3 q^{7/2}-4 q^{5/2}+\frac{1}{q^{5/2}}+4 q^{3/2}-\frac{3}{q^{3/2}}-5 \sqrt{q}+\frac{3}{\sqrt{q}}} (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^3 a^{-3} -z a^{-3} +z^5 a^{-1} -a z^3+3 z^3 a^{-1} -a z+2 z a^{-1} +a z^{-1} - a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{-5} +3 z^4 a^{-4} -2 z^2 a^{-4} +4 z^5 a^{-3} -5 z^3 a^{-3} +2 z a^{-3} +2 z^6 a^{-2} +a^2 z^4+z^4 a^{-2} -a^2 z^2-3 z^2 a^{-2} +3 a z^5+7 z^5 a^{-1} -6 a z^3-12 z^3 a^{-1} +2 a z+4 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +2 z^6-z^4-2 z^2-1} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



