L6n1
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L6n1 is [math]\displaystyle{ 6^3_3 }[/math] in Rolfsen's table of links. It makes three fibers in the Hopf fibration. |
Link Presentations
[edit Notes on L6n1's Link Presentations]
| Planar diagram presentation | X6172 X12,8,9,7 X4,12,1,11 X5,11,6,10 X3845 X9,3,10,2 |
| Gauss code | {1, 6, -5, -3}, {-4, -1, 2, 5}, {-6, 4, 3, -2} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{w-u v}{\sqrt{u} \sqrt{v} \sqrt{w}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^4+q^2+2 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^2 a^{-2} -3 a^{-2} + a^{-4} +2-2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-2} +z^4 a^{-4} +z^3 a^{-1} +z^3 a^{-3} -4 z^2 a^{-2} -4 z^2 a^{-4} -3 z a^{-1} -3 z a^{-3} +5 a^{-2} +3 a^{-4} +3+2 a^{-1} z^{-1} +2 a^{-3} z^{-1} -2 a^{-2} z^{-2} - a^{-4} z^{-2} - z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|












