L6a5
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L6a5 is [math]\displaystyle{ 6^3_1 }[/math] in the Rolfsen table of links. It is a closed three-link chain. |
Link Presentations
[edit Notes on L6a5's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X12,7,9,8 X8,11,5,12 X2536 X4,9,1,10 |
| Gauss code | {1, -5, 2, -6}, {5, -1, 3, -4}, {6, -2, 4, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(2) t(1)+t(3) t(1)-t(1)-t(2)+t(2) t(3)-t(3)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-1} -2 q^{-2} +3 q^{-3} - q^{-4} +3 q^{-5} - q^{-6} + q^{-7} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^8 z^{-2} -2 a^6 z^{-2} -3 a^6+2 a^4 z^2+a^4 z^{-2} +3 a^4+a^2 z^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^8-3 z^2 a^8-a^8 z^{-2} +3 a^8+z^5 a^7-z^3 a^7-3 z a^7+2 a^7 z^{-1} +4 z^4 a^6-9 z^2 a^6-2 a^6 z^{-2} +5 a^6+z^5 a^5+z^3 a^5-3 z a^5+2 a^5 z^{-1} +3 z^4 a^4-5 z^2 a^4-a^4 z^{-2} +3 a^4+2 z^3 a^3+z^2 a^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|







