L9a37
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a37 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{7}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a37's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,4,13,3 X18,12,9,11 X2,9,3,10 X4,18,5,17 X16,8,17,7 X14,6,15,5 X6,16,7,15 X8,14,1,13 |
| Gauss code | {1, -4, 2, -5, 7, -8, 6, -9}, {4, -1, 3, -2, 9, -7, 8, -6, 5, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{u^3 v^2-u^3 v+u^2 v^3-4 u^2 v^2+3 u^2 v-u^2-u v^3+3 u v^2-4 u v+u-v^2+v}{u^{3/2} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{17/2}-3 q^{15/2}+5 q^{13/2}-7 q^{11/2}+7 q^{9/2}-8 q^{7/2}+6 q^{5/2}-4 q^{3/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}}} (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{-7} +z a^{-7} -z^5 a^{-5} -2 z^3 a^{-5} -z a^{-5} - a^{-5} z^{-1} -z^5 a^{-3} -2 z^3 a^{-3} + a^{-3} z^{-1} +z^3 a^{-1} +2 z a^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-10} -z^2 a^{-10} +3 z^5 a^{-9} -4 z^3 a^{-9} +z a^{-9} +4 z^6 a^{-8} -5 z^4 a^{-8} +z^2 a^{-8} +3 z^7 a^{-7} -2 z^5 a^{-7} +z^8 a^{-6} +4 z^6 a^{-6} -7 z^4 a^{-6} +3 z^2 a^{-6} +5 z^7 a^{-5} -9 z^5 a^{-5} +8 z^3 a^{-5} -5 z a^{-5} + a^{-5} z^{-1} +z^8 a^{-4} +2 z^6 a^{-4} -6 z^4 a^{-4} +4 z^2 a^{-4} - a^{-4} +2 z^7 a^{-3} -3 z^5 a^{-3} +z^3 a^{-3} -2 z a^{-3} + a^{-3} z^{-1} +2 z^6 a^{-2} -5 z^4 a^{-2} +3 z^2 a^{-2} +z^5 a^{-1} -3 z^3 a^{-1} +2 z a^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



