L9a38
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a38 is [math]\displaystyle{ 9^2_{5} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a38's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X2,11,3,12 X12,3,13,4 X4,9,5,10 X14,6,15,5 X18,14,9,13 X16,8,17,7 X6,16,7,15 X8,18,1,17 |
| Gauss code | {1, -2, 3, -4, 5, -8, 7, -9}, {4, -1, 2, -3, 6, -5, 8, -7, 9, -6} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) (t(1) t(2)+1)^2}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^{9/2}+3 q^{7/2}-\frac{1}{q^{7/2}}-5 q^{5/2}+\frac{2}{q^{5/2}}+5 q^{3/2}-\frac{3}{q^{3/2}}+q^{11/2}-6 \sqrt{q}+\frac{4}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^7 a^{-1} +a z^5-6 z^5 a^{-1} +z^5 a^{-3} +4 a z^3-12 z^3 a^{-1} +4 z^3 a^{-3} +4 a z-8 z a^{-1} +4 z a^{-3} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-6} -2 z^2 a^{-6} +2 z^5 a^{-5} -4 z^3 a^{-5} +z a^{-5} +2 z^6 a^{-4} -3 z^4 a^{-4} +z^2 a^{-4} +2 z^7 a^{-3} +a^3 z^5-5 z^5 a^{-3} -3 a^3 z^3+8 z^3 a^{-3} +a^3 z-4 z a^{-3} +z^8 a^{-2} +2 a^2 z^6-z^6 a^{-2} -6 a^2 z^4+3 a^2 z^2+3 z^2 a^{-2} +2 a z^7+4 z^7 a^{-1} -6 a z^5-14 z^5 a^{-1} +6 a z^3+21 z^3 a^{-1} -4 a z-10 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +z^8-z^6-2 z^4+3 z^2-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



