L9a39
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a39 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{2}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a39's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X2,11,3,12 X12,3,13,4 X14,5,15,6 X6,9,7,10 X16,8,17,7 X18,16,9,15 X8,18,1,17 X4,13,5,14 |
| Gauss code | {1, -2, 3, -9, 4, -5, 6, -8}, {5, -1, 2, -3, 9, -4, 7, -6, 8, -7} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(2)^3 t(1)^3-t(2)^2 t(1)^3-t(2)^3 t(1)^2+3 t(2)^2 t(1)^2-t(2) t(1)^2-t(2)^2 t(1)+3 t(2) t(1)-t(1)-t(2)+1}{t(1)^{3/2} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{q^{9/2}}-\frac{5}{q^{7/2}}+\frac{4}{q^{5/2}}+q^{3/2}-\frac{4}{q^{3/2}}-\frac{1}{q^{15/2}}+\frac{2}{q^{13/2}}-\frac{3}{q^{11/2}}-2 \sqrt{q}+\frac{2}{\sqrt{q}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^3 z^7+a^5 z^5-6 a^3 z^5+a z^5+4 a^5 z^3-12 a^3 z^3+4 a z^3+4 a^5 z-9 a^3 z+3 a z+a^5 z^{-1} -a^3 z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^3 a^9+z a^9-2 z^4 a^8+2 z^2 a^8-2 z^5 a^7+z^3 a^7-2 z^6 a^6+2 z^4 a^6-z^2 a^6-2 z^7 a^5+5 z^5 a^5-7 z^3 a^5+5 z a^5-a^5 z^{-1} -z^8 a^4+z^6 a^4+3 z^4 a^4-4 z^2 a^4+a^4-4 z^7 a^3+16 z^5 a^3-20 z^3 a^3+10 z a^3-a^3 z^{-1} -z^8 a^2+2 z^6 a^2+3 z^4 a^2-4 z^2 a^2-2 z^7 a+9 z^5 a-11 z^3 a+4 z a-z^6+4 z^4-3 z^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



