L9a4
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a4 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{18}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a4's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X16,10,17,9 X18,14,5,13 X14,18,15,17 X8,16,9,15 X2536 X4,12,1,11 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 3, -7, 4, -2, 9, -3, 5, -6, 7, -4, 6, -5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2 (u-1) (v-1) \left(v^2-v+1\right)}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{17/2}-3 q^{15/2}+6 q^{13/2}-7 q^{11/2}+8 q^{9/2}-9 q^{7/2}+6 q^{5/2}-5 q^{3/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}}} (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{-7} +z a^{-7} + a^{-7} z^{-1} -z^5 a^{-5} -2 z^3 a^{-5} -2 z a^{-5} -2 a^{-5} z^{-1} -z^5 a^{-3} -2 z^3 a^{-3} -z a^{-3} +z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8 a^{-4} -z^8 a^{-6} -2 z^7 a^{-3} -6 z^7 a^{-5} -4 z^7 a^{-7} -2 z^6 a^{-2} -4 z^6 a^{-4} -7 z^6 a^{-6} -5 z^6 a^{-8} -z^5 a^{-1} +z^5 a^{-3} +10 z^5 a^{-5} +5 z^5 a^{-7} -3 z^5 a^{-9} +4 z^4 a^{-2} +11 z^4 a^{-4} +16 z^4 a^{-6} +8 z^4 a^{-8} -z^4 a^{-10} +3 z^3 a^{-1} +4 z^3 a^{-3} -6 z^3 a^{-5} -4 z^3 a^{-7} +3 z^3 a^{-9} -z^2 a^{-2} -8 z^2 a^{-4} -13 z^2 a^{-6} -5 z^2 a^{-8} +z^2 a^{-10} -3 z a^{-1} -2 z a^{-3} +3 z a^{-5} +2 z a^{-7} - a^{-2} +3 a^{-4} +5 a^{-6} +2 a^{-8} + a^{-1} z^{-1} -2 a^{-5} z^{-1} - a^{-7} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



