L9a5
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a5 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{30}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a5's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,8,15,7 X18,16,5,15 X16,12,17,11 X12,18,13,17 X8,14,9,13 X2536 X4,9,1,10 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 3, -7, 9, -2, 5, -6, 7, -3, 4, -5, 6, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1) t(2)^3-3 t(2)^3-4 t(1) t(2)^2+5 t(2)^2+5 t(1) t(2)-4 t(2)-3 t(1)+1}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 q^{9/2}+6 q^{7/2}-\frac{1}{q^{7/2}}-8 q^{5/2}+\frac{2}{q^{5/2}}+9 q^{3/2}-\frac{6}{q^{3/2}}+q^{11/2}-9 \sqrt{q}+\frac{7}{\sqrt{q}}} (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{-1} -2 a z^3+z^3 a^{-1} -2 z^3 a^{-3} +a^3 z-2 a z-z a^{-1} -z a^{-3} +z a^{-5} +a^3 z^{-1} -2 a^{-1} z^{-1} + a^{-3} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8 a^{-2} -z^8-3 a z^7-7 z^7 a^{-1} -4 z^7 a^{-3} -2 a^2 z^6-10 z^6 a^{-2} -5 z^6 a^{-4} -7 z^6-a^3 z^5+5 a z^5+11 z^5 a^{-1} +2 z^5 a^{-3} -3 z^5 a^{-5} +3 a^2 z^4+24 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +19 z^4+3 a^3 z^3-3 a z^3-7 z^3 a^{-1} +2 z^3 a^{-3} +3 z^3 a^{-5} -19 z^2 a^{-2} -5 z^2 a^{-4} +z^2 a^{-6} -13 z^2-3 a^3 z+2 a z+6 z a^{-1} -z a^{-5} -a^2+5 a^{-2} +2 a^{-4} +3+a^3 z^{-1} -2 a^{-1} z^{-1} - a^{-3} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



