L9a46
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a46 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^3_{10}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a46's Link Presentations]
| Planar diagram presentation | X6172 X12,6,13,5 X8493 X2,14,3,13 X14,7,15,8 X16,12,17,11 X18,9,11,10 X10,17,5,18 X4,15,1,16 |
| Gauss code | {1, -4, 3, -9}, {2, -1, 5, -3, 7, -8}, {6, -2, 4, -5, 9, -6, 8, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(u-1) (v-1)^2 (w-1)^2}{\sqrt{u} v w}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-5} +q^4+4 q^{-4} -4 q^3-6 q^{-3} +7 q^2+10 q^{-2} -9 q-10 q^{-1} +12} (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^4 z^2+a^4 z^{-2} +2 a^2 z^4+z^4 a^{-2} +3 a^2 z^2+z^2 a^{-2} -2 a^2 z^{-2} -a^2-z^6-3 z^4-3 z^2+ z^{-2} +1} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 z^5-a^5 z^3+4 a^4 z^6-8 a^4 z^4+z^4 a^{-4} +4 a^4 z^2-a^4 z^{-2} +a^4+5 a^3 z^7-8 a^3 z^5+4 z^5 a^{-3} +2 a^3 z^3-3 z^3 a^{-3} -a^3 z+2 a^3 z^{-1} +2 a^2 z^8+8 a^2 z^6+7 z^6 a^{-2} -23 a^2 z^4-9 z^4 a^{-2} +12 a^2 z^2+4 z^2 a^{-2} -2 a^2 z^{-2} +a^2+11 a z^7+6 z^7 a^{-1} -17 a z^5-4 z^5 a^{-1} +4 a z^3-2 z^3 a^{-1} -a z+2 a z^{-1} +2 z^8+11 z^6-25 z^4+12 z^2- z^{-2} +1} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



