L9a47
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a47 is [math]\displaystyle{ 9^3_{2} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a47's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X10,13,5,14 X18,15,11,16 X14,7,15,8 X8,18,9,17 X16,10,17,9 X2536 X4,11,1,12 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 5, -6, 7, -3}, {9, -2, 3, -5, 4, -7, 6, -4} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(3)^2 t(2)^2+t(1) t(2)^2-t(1) t(3) t(2)^2+2 t(3) t(2)^2-t(2)^2-t(1) t(3)^2 t(2)+2 t(3)^2 t(2)-2 t(1) t(2)+4 t(1) t(3) t(2)-4 t(3) t(2)+t(2)+t(1) t(3)^2-t(3)^2+t(1)-2 t(1) t(3)+t(3)}{\sqrt{t(1)} t(2) t(3)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-8} +3 q^{-7} -5 q^{-6} +8 q^{-5} -8 q^{-4} +10 q^{-3} -7 q^{-2} +q+6 q^{-1} -3 }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^8+3 z^2 a^6+a^6 z^{-2} +3 a^6-2 z^4 a^4-4 z^2 a^4-2 a^4 z^{-2} -5 a^4-z^4 a^2+z^2 a^2+a^2 z^{-2} +3 a^2+z^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^9-2 z^3 a^9+z a^9+3 z^6 a^8-7 z^4 a^8+5 z^2 a^8-2 a^8+3 z^7 a^7-3 z^5 a^7-4 z^3 a^7+3 z a^7+z^8 a^6+8 z^6 a^6-24 z^4 a^6+21 z^2 a^6+a^6 z^{-2} -8 a^6+7 z^7 a^5-10 z^5 a^5+5 z a^5-2 a^5 z^{-1} +z^8 a^4+10 z^6 a^4-26 z^4 a^4+24 z^2 a^4+2 a^4 z^{-2} -9 a^4+4 z^7 a^3-3 z^5 a^3-z^3 a^3+3 z a^3-2 a^3 z^{-1} +5 z^6 a^2-8 z^4 a^2+7 z^2 a^2+a^2 z^{-2} -4 a^2+3 z^5 a-3 z^3 a+z^4-z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



