L9a48
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a48 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^3_{5}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a48's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X18,14,11,13 X8,16,9,15 X14,8,15,7 X16,10,17,9 X10,18,5,17 X2536 X4,11,1,12 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 5, -4, 6, -7}, {9, -2, 3, -5, 4, -6, 7, -3} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{u v^2 w^2-u v^2 w-u v w^2+2 u v w-u v-u w+2 u-2 v^2 w^2+v^2 w+v w^2-2 v w+v+w-1}{\sqrt{u} v w}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+3 q^5-4 q^4+6 q^3-6 q^2+6 q-4+4 q^{-1} - q^{-2} + q^{-3} } (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-4} -2 z^2 a^{-4} +z^6 a^{-2} +4 z^4 a^{-2} +a^2 z^2+5 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +3 a^2+3 a^{-2} -2 z^4-7 z^2-2 z^{-2} -6} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8+a z^7+4 z^7 a^{-1} +3 z^7 a^{-3} +a^2 z^6+2 z^6 a^{-2} +4 z^6 a^{-4} -z^6-2 a z^5-10 z^5 a^{-1} -4 z^5 a^{-3} +4 z^5 a^{-5} -5 a^2 z^4-8 z^4 a^{-2} -4 z^4 a^{-4} +3 z^4 a^{-6} -6 z^4-3 a z^3+2 z^3 a^{-1} +z^3 a^{-3} -3 z^3 a^{-5} +z^3 a^{-7} +8 a^2 z^2+5 z^2 a^{-2} -2 z^2 a^{-6} +11 z^2+6 a z+6 z a^{-1} -5 a^2-3 a^{-2} + a^{-4} -8-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



