L9a49
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a49 is [math]\displaystyle{ 9^3_{6} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a49's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X16,10,17,9 X14,8,15,7 X18,14,11,13 X10,16,5,15 X8,18,9,17 X2536 X4,11,1,12 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 4, -7, 3, -6}, {9, -2, 5, -4, 6, -3, 7, -5} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v^2 w-u v^2+u v w^2-3 u v w+2 u v-u w^2+2 u w-2 v^2 w+v^2-2 v w^2+3 v w-v+w^2-w}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^5+3 q^4+ q^{-4} -4 q^3-2 q^{-3} +7 q^2+5 q^{-2} -7 q-6 q^{-1} +8 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^2 a^{-4} +a^4+z^4 a^{-2} -2 a^2 z^2+a^2 z^{-2} +z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} +z^4-z^2-2 z^{-2} -3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^8 a^{-2} +z^8+2 a z^7+5 z^7 a^{-1} +3 z^7 a^{-3} +3 a^2 z^6+4 z^6 a^{-2} +3 z^6 a^{-4} +4 z^6+2 a^3 z^5+2 a z^5-7 z^5 a^{-1} -6 z^5 a^{-3} +z^5 a^{-5} +a^4 z^4-4 a^2 z^4-13 z^4 a^{-2} -8 z^4 a^{-4} -10 z^4-2 a^3 z^3-7 a z^3-z^3 a^{-1} +2 z^3 a^{-3} -2 z^3 a^{-5} -2 a^4 z^2+4 a^2 z^2+11 z^2 a^{-2} +5 z^2 a^{-4} +12 z^2+6 a z+6 z a^{-1} +a^4-3 a^2-5 a^{-2} -8-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



