L9a50
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a50 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^3_{1}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a50's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X18,16,11,15 X14,8,15,7 X10,12,5,11 X8,17,9,18 X16,9,17,10 X2536 X4,14,1,13 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 4, -6, 7, -5}, {5, -2, 9, -4, 3, -7, 6, -3} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1) t(3)^2 t(2)^2-t(3)^2 t(2)^2-t(1) t(3) t(2)^2+2 t(3) t(2)^2-t(2)^2-2 t(1) t(3)^2 t(2)+t(3)^2 t(2)-t(1) t(2)+2 t(1) t(3) t(2)-2 t(3) t(2)+2 t(2)+t(1) t(3)^2+t(1)-2 t(1) t(3)+t(3)-1}{\sqrt{t(1)} t(2) t(3)}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+3 q^5-5 q^4+7 q^3+ q^{-3} -7 q^2-2 q^{-2} +8 q+5 q^{-1} -5} (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-4} -2 z^2 a^{-4} - a^{-4} +z^6 a^{-2} +4 z^4 a^{-2} +a^2 z^2+6 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +2 a^2+4 a^{-2} -2 z^4-6 z^2-2 z^{-2} -5} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8+2 a z^7+6 z^7 a^{-1} +4 z^7 a^{-3} +a^2 z^6+8 z^6 a^{-2} +6 z^6 a^{-4} +3 z^6-6 a z^5-14 z^5 a^{-1} -3 z^5 a^{-3} +5 z^5 a^{-5} -4 a^2 z^4-27 z^4 a^{-2} -9 z^4 a^{-4} +3 z^4 a^{-6} -19 z^4+3 a z^3+3 z^3 a^{-1} -5 z^3 a^{-3} -4 z^3 a^{-5} +z^3 a^{-7} +6 a^2 z^2+23 z^2 a^{-2} +6 z^2 a^{-4} -z^2 a^{-6} +22 z^2+3 a z+5 z a^{-1} +3 z a^{-3} +z a^{-5} -4 a^2-8 a^{-2} -2 a^{-4} -9-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



