L9a51
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a51 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^3_{11}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a51's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X8,12,9,11 X18,8,11,7 X16,13,17,14 X14,6,15,5 X10,16,5,15 X2,9,3,10 X4,18,1,17 |
| Gauss code | {1, -8, 2, -9}, {6, -1, 4, -3, 8, -7}, {3, -2, 5, -6, 7, -5, 9, -4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{u v^2 w^2-2 u v^2 w-2 u v w^2+4 u v w-2 u v+u w^2-2 u w+u-v^2 w^2+2 v^2 w-v^2+2 v w^2-4 v w+2 v+2 w-1}{\sqrt{u} v w}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^7-3 q^6+7 q^5-8 q^4+11 q^3-10 q^2- q^{-2} +9 q+4 q^{-1} -6} (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^{-6} + a^{-6} z^{-2} + a^{-6} -2 z^4 a^{-4} -4 z^2 a^{-4} -2 a^{-4} z^{-2} -3 a^{-4} +z^6 a^{-2} +3 z^4 a^{-2} +3 z^2 a^{-2} + a^{-2} z^{-2} + a^{-2} -z^4-z^2+1} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-8} -z^2 a^{-8} +3 z^5 a^{-7} -2 z^3 a^{-7} +6 z^6 a^{-6} -10 z^4 a^{-6} +10 z^2 a^{-6} + a^{-6} z^{-2} -5 a^{-6} +5 z^7 a^{-5} -3 z^5 a^{-5} -4 z^3 a^{-5} +6 z a^{-5} -2 a^{-5} z^{-1} +2 z^8 a^{-4} +8 z^6 a^{-4} -21 z^4 a^{-4} +17 z^2 a^{-4} +2 a^{-4} z^{-2} -8 a^{-4} +10 z^7 a^{-3} -16 z^5 a^{-3} +2 z^3 a^{-3} +6 z a^{-3} -2 a^{-3} z^{-1} +2 z^8 a^{-2} +6 z^6 a^{-2} -18 z^4 a^{-2} +9 z^2 a^{-2} + a^{-2} z^{-2} -3 a^{-2} +5 z^7 a^{-1} +a z^5-9 z^5 a^{-1} -a z^3+3 z^3 a^{-1} +4 z^6-8 z^4+3 z^2+1} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



