L9a52
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a52 is [math]\displaystyle{ 9^3_{8} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a52's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X16,11,17,12 X14,8,15,7 X8,14,9,13 X18,15,13,16 X12,17,5,18 X2536 X4,9,1,10 |
| Gauss code | {1, -8, 2, -9}, {5, -4, 6, -3, 7, -6}, {8, -1, 4, -5, 9, -2, 3, -7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(v-1) (w-1) \left(2 u w-u+w^2-2 w\right)}{\sqrt{u} \sqrt{v} w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-8} +3 q^{-7} -5 q^{-6} +8 q^{-5} -7 q^{-4} +9 q^{-3} -7 q^{-2} +q+5 q^{-1} -2 }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^8+3 a^6 z^2+a^6 z^{-2} +3 a^6-2 a^4 z^4-4 a^4 z^2-2 a^4 z^{-2} -4 a^4-a^2 z^4+a^2 z^{-2} +a^2+z^2+1 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^9 z^5-2 a^9 z^3+a^9 z+3 a^8 z^6-7 a^8 z^4+5 a^8 z^2-2 a^8+3 a^7 z^7-3 a^7 z^5-5 a^7 z^3+3 a^7 z+a^6 z^8+7 a^6 z^6-22 a^6 z^4+20 a^6 z^2+a^6 z^{-2} -9 a^6+6 a^5 z^7-8 a^5 z^5-2 a^5 z^3+7 a^5 z-2 a^5 z^{-1} +a^4 z^8+7 a^4 z^6-19 a^4 z^4+20 a^4 z^2+2 a^4 z^{-2} -10 a^4+3 a^3 z^7-2 a^3 z^5-a^3 z^3+5 a^3 z-2 a^3 z^{-1} +3 a^2 z^6-3 a^2 z^4+3 a^2 z^2+a^2 z^{-2} -3 a^2+2 a z^5-2 a z^3+z^4-2 z^2+1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



