L9a53
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a53 is [math]\displaystyle{ 9^3_{12} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a53's Link Presentations]
| Planar diagram presentation | X6172 X12,7,13,8 X4,13,1,14 X18,10,15,9 X8493 X16,5,17,6 X14,17,5,18 X10,16,11,15 X2,12,3,11 |
| Gauss code | {1, -9, 5, -3}, {8, -6, 7, -4}, {6, -1, 2, -5, 4, -8, 9, -2, 3, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) (t(3)-1)^3}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^4-4 q^3+8 q^2-9 q+12-10 q^{-1} +10 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^4 z^2-a^4+2 a^2 z^4+z^4 a^{-2} +4 a^2 z^2+z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +3 a^2+ a^{-2} -z^6-3 z^4-4 z^2-2 z^{-2} -3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 2 a^2 z^8+2 z^8+4 a^3 z^7+11 a z^7+7 z^7 a^{-1} +3 a^4 z^6+7 a^2 z^6+8 z^6 a^{-2} +12 z^6+a^5 z^5-5 a^3 z^5-17 a z^5-7 z^5 a^{-1} +4 z^5 a^{-3} -6 a^4 z^4-22 a^2 z^4-11 z^4 a^{-2} +z^4 a^{-4} -28 z^4-2 a^5 z^3-a^3 z^3+3 a z^3-2 z^3 a^{-3} +5 a^4 z^2+17 a^2 z^2+5 z^2 a^{-2} +17 z^2+a^5 z+3 a^3 z+3 a z+z a^{-1} -2 a^4-6 a^2-2 a^{-2} -5-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



