L9a54
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a54 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^3_{9}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a54's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X18,13,15,14 X16,10,17,9 X8,16,9,15 X14,17,5,18 X2536 X4,12,1,11 |
| Gauss code | {1, -8, 2, -9}, {6, -5, 7, -4}, {8, -1, 3, -6, 5, -2, 9, -3, 4, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(3)^2-t(3)+1\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+3 q^5-6 q^4+8 q^3+ q^{-3} -7 q^2-2 q^{-2} +9 q+5 q^{-1} -6} (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +4 z^4 a^{-2} -z^4 a^{-4} -2 z^4+a^2 z^2+7 z^2 a^{-2} -2 z^2 a^{-4} -6 z^2+2 a^2+6 a^{-2} -2 a^{-4} -6+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-2} +z^8+2 a z^7+7 z^7 a^{-1} +5 z^7 a^{-3} +a^2 z^6+11 z^6 a^{-2} +8 z^6 a^{-4} +4 z^6-6 a z^5-16 z^5 a^{-1} -4 z^5 a^{-3} +6 z^5 a^{-5} -4 a^2 z^4-35 z^4 a^{-2} -14 z^4 a^{-4} +3 z^4 a^{-6} -22 z^4+4 a z^3+3 z^3 a^{-1} -7 z^3 a^{-3} -5 z^3 a^{-5} +z^3 a^{-7} +6 a^2 z^2+30 z^2 a^{-2} +10 z^2 a^{-4} +26 z^2+2 a z+6 z a^{-1} +6 z a^{-3} +2 z a^{-5} -4 a^2-12 a^{-2} -4 a^{-4} -11-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



