L9n1
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n1 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n1's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X3849 X11,18,12,5 X17,12,18,13 X9,16,10,17 X13,2,14,3 |
| Gauss code | {1, 9, -5, -3}, {-4, -1, 2, 5, -8, 4, -6, 7, -9, -2, 3, 8, -7, 6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2 t(1) t(2)^3-t(1) t(2)^2-t(2)+2}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{q^{5/2}}+\frac{1}{q^{7/2}}-\frac{2}{q^{9/2}}+\frac{1}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{2}{q^{15/2}}-\frac{1}{q^{17/2}}+\frac{1}{q^{19/2}}} (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{11} z^{-1} +z^3 a^9+4 z a^9+2 a^9 z^{-1} -z^5 a^7-4 z^3 a^7-3 z a^7-z^5 a^5-4 z^3 a^5-3 z a^5-a^5 z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{12} z^2-2 a^{12}+a^{11} z^3-a^{11} z+a^{11} z^{-1} +a^{10} z^6-5 a^{10} z^4+10 a^{10} z^2-5 a^{10}+a^9 z^7-5 a^9 z^5+9 a^9 z^3-5 a^9 z+2 a^9 z^{-1} +2 a^8 z^6-8 a^8 z^4+9 a^8 z^2-3 a^8+a^7 z^7-4 a^7 z^5+4 a^7 z^3-a^7 z+a^6 z^6-3 a^6 z^4+a^6+a^5 z^5-4 a^5 z^3+3 a^5 z-a^5 z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



