L9n2
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n2 is [math]\displaystyle{ 9^2_{46} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n2's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X15,1,16,4 X5,10,6,11 X3849 X11,18,12,5 X17,12,18,13 X9,16,10,17 X2,14,3,13 |
| Gauss code | {1, -9, -5, 3}, {-4, -1, 2, 5, -8, 4, -6, 7, 9, -2, -3, 8, -7, 6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 (t(1)-1) (t(2)-1)}{\sqrt{t(1)} \sqrt{t(2)}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{3}{q^{5/2}}+\frac{2}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}}+\frac{1}{q^{15/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 (-z)-a^7 z^{-1} +a^5 z^3+2 a^5 z+2 a^5 z^{-1} +a^3 z^3+a^3 z-2 a z-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^8+5 z^4 a^8-7 z^2 a^8+2 a^8-z^7 a^7+4 z^5 a^7-4 z^3 a^7+2 z a^7-a^7 z^{-1} -3 z^6 a^6+12 z^4 a^6-13 z^2 a^6+5 a^6-z^7 a^5+2 z^5 a^5+3 z a^5-2 a^5 z^{-1} -2 z^6 a^4+6 z^4 a^4-6 z^2 a^4+3 a^4-2 z^5 a^3+4 z^3 a^3-2 z a^3-z^4 a^2-a^2-3 z a+a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



