L9n11
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n11 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{57}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n11's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,8,15,7 X15,18,16,5 X11,16,12,17 X17,12,18,13 X8,14,9,13 X2536 X4,9,1,10 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 3, -7, 9, -2, -5, 6, 7, -3, -4, 5, -6, 4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1) t(2)^3-t(2)^3-2 t(1) t(2)^2+t(2)^2+t(1) t(2)-2 t(2)-t(1)+1}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\sqrt{q}+\frac{2}{\sqrt{q}}-\frac{3}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{3}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{1}{q^{13/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 \left(-z^3\right)-a^5 z+a^5 z^{-1} +a^3 z^5+3 a^3 z^3+a^3 z-a^3 z^{-1} -a z^3-2 a z} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^8-3 z^3 a^7+z a^7-z^6 a^6+z^4 a^6-2 z^2 a^6-z^7 a^5+2 z^5 a^5-4 z^3 a^5+4 z a^5-a^5 z^{-1} -3 z^6 a^4+7 z^4 a^4-4 z^2 a^4+a^4-z^7 a^3+z^5 a^3+2 z^3 a^3+z a^3-a^3 z^{-1} -2 z^6 a^2+6 z^4 a^2-3 z^2 a^2-z^5 a+3 z^3 a-2 z a} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



