L9n12
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n12 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{59}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n12's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X11,17,12,16 X7,15,8,14 X15,9,16,8 X13,5,14,18 X17,13,18,12 X2536 X4,9,1,10 |
| Gauss code | {1, -8, 2, -9}, {8, -1, -4, 5, 9, -2, -3, 7, -6, 4, -5, 3, -7, 6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-t(2)^5-t(1) t(2)^3+t(2)^3+t(1) t(2)^2-t(2)^2-t(1)}{\sqrt{t(1)} t(2)^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{11/2}-q^{9/2}+q^{7/2}-q^{5/2}+q^{3/2}-\sqrt{q}-\frac{1}{\sqrt{q}}-\frac{1}{q^{5/2}}} (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z a^{-5} +2 z a^{-3} +2 a^{-3} z^{-1} -z^5 a^{-1} +a z^3-6 z^3 a^{-1} +4 a z-9 z a^{-1} +3 a z^{-1} -5 a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-6} -3 z^2 a^{-6} + a^{-6} +z^5 a^{-5} -3 z^3 a^{-5} +z a^{-5} +z^4 a^{-4} -2 z^2 a^{-4} +z^3 a^{-3} -3 z a^{-3} +2 a^{-3} z^{-1} +z^6 a^{-2} -7 z^4 a^{-2} +13 z^2 a^{-2} -5 a^{-2} +a z^7+z^7 a^{-1} -7 a z^5-8 z^5 a^{-1} +15 a z^3+19 z^3 a^{-1} -12 a z-16 z a^{-1} +3 a z^{-1} +5 a^{-1} z^{-1} +z^6-7 z^4+12 z^2-5} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



