L9n13

From Knot Atlas
Jump to navigationJump to search

L9n12.gif

L9n12

L9n14.gif

L9n14

L9n13.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n13 at Knotilus!

L9n13 is in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n13's Link Presentations]

Planar diagram presentation X8192 X11,17,12,16 X3,10,4,11 X15,3,16,2 X5,13,6,12 X6718 X9,14,10,15 X13,18,14,7 X17,4,18,5
Gauss code {1, 4, -3, 9, -5, -6}, {6, -1, -7, 3, -2, 5, -8, 7, -4, 2, -9, 8}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L9n13 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(t(2) t(1)-t(1)+1) (t(1) t(2)-t(2)+1)}{t(1) t(2)}} (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{2}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{4}{q^{5/2}}+\frac{2}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}+\sqrt{q}-\frac{3}{\sqrt{q}}} (db)
Signature -1 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^5+2 z a^5-z^5 a^3-4 z^3 a^3-4 z a^3+a^3 z^{-1} +z^3 a+z a-a z^{-1} } (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^7+3 z^3 a^7-z a^7-2 z^6 a^6+7 z^4 a^6-5 z^2 a^6-z^7 a^5+2 z^5 a^5+z a^5-3 z^6 a^4+9 z^4 a^4-7 z^2 a^4-z^7 a^3+3 z^5 a^3-6 z^3 a^3+4 z a^3+a^3 z^{-1} -z^6 a^2+2 z^4 a^2-3 z^2 a^2-a^2-3 z^3 a+2 z a+a z^{-1} -z^2} (db)

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ).   
\ r
  \  
j \
-6-5-4-3-2-101χ
2       1-1
0      2 2
-2     12 1
-4    31  2
-6   12   1
-8  12    -1
-10 11     0
-12 1      -1
-141       1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=0}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n12.gif

L9n12

L9n14.gif

L9n14