L9n14
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n14 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{50}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n14's Link Presentations]
| Planar diagram presentation | X8192 X11,17,12,16 X3,10,4,11 X15,3,16,2 X5,13,6,12 X6718 X14,10,15,9 X18,14,7,13 X17,4,18,5 |
| Gauss code | {1, 4, -3, 9, -5, -6}, {6, -1, 7, 3, -2, 5, 8, -7, -4, 2, -9, -8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{u^2 v^2-u^2 v+u v-v+1}{u v}} (db) |
| Jones polynomial | (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{-3} +3 z a^{-3} + a^{-3} z^{-1} -z^5 a^{-1} +a z^3-5 z^3 a^{-1} +3 a z-7 z a^{-1} +2 a z^{-1} -3 a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^7 a^{-1} -z^7 a^{-3} -2 z^6 a^{-2} -z^6 a^{-4} -z^6+5 z^5 a^{-1} +5 z^5 a^{-3} +9 z^4 a^{-2} +5 z^4 a^{-4} +4 z^4-2 a z^3-9 z^3 a^{-1} -7 z^3 a^{-3} -a^2 z^2-10 z^2 a^{-2} -6 z^2 a^{-4} -5 z^2-a^3 z+4 a z+9 z a^{-1} +4 z a^{-3} +3 a^{-2} + a^{-4} +3-2 a z^{-1} -3 a^{-1} z^{-1} - a^{-3} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



