L9n15
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
This is a Seifert-fibered link: it is the trefoil plus the core of one solid torus. L9n15 is in the Rolfsen table of links. |
The Triune sculpture in Philadelpdia by Robert Engman, showing a Seifert surface for L9n15. Photo by sameold2008 |
Link Presentations
[edit Notes on L9n15's Link Presentations]
| Planar diagram presentation | X8192 X16,11,17,12 X3,10,4,11 X2,15,3,16 X12,5,13,6 X6718 X9,14,10,15 X13,18,14,7 X17,4,18,5 |
| Gauss code | {1, -4, -3, 9, 5, -6}, {6, -1, -7, 3, 2, -5, -8, 7, 4, -2, -9, 8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{q^{7/2}}-\frac{1}{q^{11/2}}} (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{11} (-z)-a^{11} z^{-1} +a^9 z^5+6 a^9 z^3+9 a^9 z+3 a^9 z^{-1} -a^7 z^7-7 a^7 z^5-15 a^7 z^3-11 a^7 z-2 a^7 z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{12}+z a^{11}-a^{11} z^{-1} -z^6 a^{10}+6 z^4 a^{10}-9 z^2 a^{10}+3 a^{10}-z^7 a^9+7 z^5 a^9-15 z^3 a^9+12 z a^9-3 a^9 z^{-1} -z^6 a^8+6 z^4 a^8-9 z^2 a^8+3 a^8-z^7 a^7+7 z^5 a^7-15 z^3 a^7+11 z a^7-2 a^7 z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|




