L9n16
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n16 is [math]\displaystyle{ 9^2_{51} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n16's Link Presentations]
| Planar diagram presentation | X8192 X11,17,12,16 X3,10,4,11 X2,15,3,16 X12,5,13,6 X6718 X14,10,15,9 X18,14,7,13 X17,4,18,5 |
| Gauss code | {1, -4, -3, 9, 5, -6}, {6, -1, 7, 3, -2, -5, 8, -7, 4, 2, -9, -8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^2 v+u v^4-u v^3+u v^2-u v+u+v^3}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{3}{q^{5/2}}+\frac{2}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{1}{q^{11/2}}+\sqrt{q}-\frac{2}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^5+3 z a^5+2 a^5 z^{-1} -z^5 a^3-5 z^3 a^3-8 z a^3-3 a^3 z^{-1} +z^3 a+2 z a+a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^5 a^7+4 z^3 a^7-3 z a^7-z^6 a^6+3 z^4 a^6-z^2 a^6-z^7 a^5+4 z^5 a^5-6 z^3 a^5+6 z a^5-2 a^5 z^{-1} -2 z^6 a^4+7 z^4 a^4-8 z^2 a^4+3 a^4-z^7 a^3+5 z^5 a^3-12 z^3 a^3+11 z a^3-3 a^3 z^{-1} -z^6 a^2+4 z^4 a^2-8 z^2 a^2+3 a^2-2 z^3 a+2 z a-a z^{-1} -z^2+1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



