L9n17
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n17 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n17's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X7,14,8,15 X13,18,14,7 X17,1,18,6 X16,11,17,12 X5,12,6,13 X4,16,5,15 |
| Gauss code | {1, -2, 3, -9, -8, 6}, {-4, -1, 2, -3, 7, 8, -5, 4, 9, -7, -6, 5} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(2)^2 t(1)^2-t(2) t(1)^2-2 t(2)^2 t(1)+3 t(2) t(1)-2 t(1)-t(2)+1}{t(1) t(2)}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{q^{9/2}}-\frac{4}{q^{7/2}}+\frac{2}{q^{5/2}}-\frac{2}{q^{3/2}}+\frac{1}{q^{17/2}}-\frac{2}{q^{15/2}}+\frac{3}{q^{13/2}}-\frac{4}{q^{11/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^3 a^7-2 z a^7-a^7 z^{-1} +z^5 a^5+4 z^3 a^5+6 z a^5+3 a^5 z^{-1} -2 z^3 a^3-5 z a^3-2 a^3 z^{-1} } (db) |
| Kauffman polynomial | (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



