L9n19
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n19 is [math]\displaystyle{ 9^2_{61} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n19's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X3,12,4,13 X18,5,9,6 X6,9,7,10 X16,12,17,11 X7,14,8,15 X13,4,14,5 X15,8,16,1 X2,17,3,18 |
| Gauss code | {1, -9, -2, 7, 3, -4, -6, 8}, {4, -1, 5, 2, -7, 6, -8, -5, 9, -3} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{\left(t(1)^2+t(2)\right) \left(t(1) t(2)^2+1\right)}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{5/2}}-\frac{1}{q^{19/2}} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^9+a^9 z^{-1} -a^7 z^{-1} -z^5 a^5-5 z^3 a^5-5 z a^5 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{11} z^5-5 a^{11} z^3+5 a^{11} z-a^9 z+a^9 z^{-1} -a^8-a^7 z+a^7 z^{-1} +a^5 z^5-5 a^5 z^3+5 a^5 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



