L9n20
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n20 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^3_{16}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n20's Link Presentations]
| Planar diagram presentation | X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,17,12,16 X15,9,16,18 X17,13,18,12 X2536 X9,1,10,4 |
| Gauss code | {1, -8, -2, 9}, {8, -1, -3, 4}, {-9, 2, -5, 7, -4, 3, -6, 5, -7, 6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+2 q^7-4 q^6+5 q^5-4 q^4+6 q^3-3 q^2+3 q} (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4 a^{-4} +3 z^2 a^{-2} -7 z^2 a^{-4} +3 z^2 a^{-6} +5 a^{-2} -10 a^{-4} +6 a^{-6} - a^{-8} +2 a^{-2} z^{-2} -5 a^{-4} z^{-2} +4 a^{-6} z^{-2} - a^{-8} z^{-2} } (db) |
| Kauffman polynomial | (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



