L9n21
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n21 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^3_{17}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n21's Link Presentations]
| Planar diagram presentation | X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X16,11,17,12 X18,15,9,16 X12,17,13,18 X2536 X9,1,10,4 |
| Gauss code | {1, -8, -2, 9}, {8, -1, -3, 4}, {-9, 2, 5, -7, -4, 3, 6, -5, 7, -6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-u v-u w^2+u w-v w^2+v w+w^3}{\sqrt{u} \sqrt{v} w^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-5} + q^{-4} +q^3- q^{-3} + q^{-2} +q+2} (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4-a^4 z^{-2} -2 a^4+z^4 a^2+5 z^2 a^2+4 a^2 z^{-2} +8 a^2-z^4-6 z^2-5 z^{-2} -9+z^2 a^{-2} +2 a^{-2} z^{-2} +3 a^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4 z^6+a^2 z^6+z^6 a^{-2} +z^6+a^5 z^5+2 a^3 z^5+2 a z^5+z^5 a^{-1} -4 a^4 z^4-6 a^2 z^4-6 z^4 a^{-2} -8 z^4-4 a^5 z^3-10 a^3 z^3-13 a z^3-7 z^3 a^{-1} +3 a^4 z^2+11 a^2 z^2+10 z^2 a^{-2} +18 z^2+3 a^5 z+13 a^3 z+21 a z+11 z a^{-1} -2 a^4-10 a^2-7 a^{-2} -14-a^5 z^{-1} -5 a^3 z^{-1} -9 a z^{-1} -5 a^{-1} z^{-1} +a^4 z^{-2} +4 a^2 z^{-2} +2 a^{-2} z^{-2} +5 z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



