L9n23
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n23 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^3_{13}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n23's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X3849 X13,2,14,3 X14,7,15,8 X11,16,12,17 X9,11,10,18 X17,5,18,10 X4,15,1,16 |
| Gauss code | {1, 4, -3, -9}, {-2, -1, 5, 3, -7, 8}, {-6, 2, -4, -5, 9, 6, -8, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-t(1) t(3)^2 t(2)^2+t(1) t(3) t(2)^2+t(1) t(3)^2 t(2)-t(2)-t(3)+1}{\sqrt{t(1)} t(2) t(3)}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1- q^{-1} +2 q^{-2} - q^{-3} +3 q^{-4} - q^{-5} +2 q^{-6} - q^{-7} } (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^8+z^4 a^6+4 z^2 a^6+a^6 z^{-2} +3 a^6-z^6 a^4-5 z^4 a^4-7 z^2 a^4-2 a^4 z^{-2} -5 a^4+z^4 a^2+4 z^2 a^2+a^2 z^{-2} +3 a^2} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z a^9+2 z^2 a^8-2 a^8+z^5 a^7-3 z^3 a^7+3 z a^7+2 z^6 a^6-9 z^4 a^6+13 z^2 a^6+a^6 z^{-2} -8 a^6+z^7 a^5-3 z^5 a^5-z^3 a^5+5 z a^5-2 a^5 z^{-1} +3 z^6 a^4-14 z^4 a^4+18 z^2 a^4+2 a^4 z^{-2} -9 a^4+z^7 a^3-4 z^5 a^3+2 z^3 a^3+3 z a^3-2 a^3 z^{-1} +z^6 a^2-5 z^4 a^2+7 z^2 a^2+a^2 z^{-2} -4 a^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



