L9n24
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n24 is [math]\displaystyle{ 9^3_{14} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n24's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X3849 X2,14,3,13 X14,7,15,8 X11,16,12,17 X9,11,10,18 X17,5,18,10 X15,1,16,4 |
| Gauss code | {1, -4, -3, 9}, {-2, -1, 5, 3, -7, 8}, {-6, 2, 4, -5, -9, 6, -8, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v w^2-2 u v w-u w^2+u w+v^2 (-w)+v^2+2 v w-v}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 2 q^2-2 q+4-3 q^{-1} +4 q^{-2} -2 q^{-3} +2 q^{-4} - q^{-5} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^2 a^4-a^4+z^4 a^2+3 z^2 a^2+a^2 z^{-2} +4 a^2-3 z^2-2 z^{-2} -5+ a^{-2} z^{-2} +2 a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^5 z^5-3 a^5 z^3+a^5 z+2 a^4 z^6-7 a^4 z^4+6 a^4 z^2-2 a^4+a^3 z^7-a^3 z^5-4 a^3 z^3+3 a^3 z+4 a^2 z^6-14 a^2 z^4+17 a^2 z^2+3 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -8 a^2-4 a^{-2} +a z^7-a z^5+z^5 a^{-1} -2 a z^3-z^3 a^{-1} +5 a z+3 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +2 z^6-7 z^4+14 z^2+2 z^{-2} -9 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



