L9n25
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n25 is [math]\displaystyle{ 9^3_{18} }[/math] in the Rolfsen table of links. The pairwise linking number of each component is zero, but it is not a Brunnian link as removing the blue component in the image will leave an L5a1 link. |
Link Presentations
[edit Notes on L9n25's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X8493 X2,14,3,13 X14,7,15,8 X11,16,12,17 X9,11,10,18 X17,5,18,10 X4,15,1,16 |
| Gauss code | {1, -4, 3, -9}, {-2, -1, 5, -3, -7, 8}, {-6, 2, 4, -5, 9, 6, -8, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1) (w-1)}{\sqrt{u} \sqrt{v} \sqrt{w}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-5} +2 q^{-4} -2 q^{-3} +q^2+3 q^{-2} -q-2 q^{-1} +4 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^2 a^4-a^4+z^4 a^2+3 z^2 a^2+a^2 z^{-2} +3 a^2-2 z^2-2 z^{-2} -3+ a^{-2} z^{-2} + a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^3 z^7+a z^7+2 a^4 z^6+3 a^2 z^6+z^6+a^5 z^5-2 a^3 z^5-3 a z^5-7 a^4 z^4-11 a^2 z^4-4 z^4-3 a^5 z^3-2 a^3 z^3+2 a z^3+z^3 a^{-1} +5 a^4 z^2+13 a^2 z^2+z^2 a^{-2} +9 z^2+a^5 z+3 a^3 z+3 a z+z a^{-1} -2 a^4-6 a^2-2 a^{-2} -5-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



