L9n8
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n8 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{56}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n8's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X8493 X9,14,10,15 X13,10,14,11 X11,18,12,5 X2,16,3,15 |
| Gauss code | {1, -9, 5, -3}, {-4, -1, 2, -5, -6, 7, -8, 4, -7, 6, 9, -2, 3, 8} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(u-1) (v-1) \left(v^2-v+1\right)}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4}{q^{9/2}}-\frac{5}{q^{7/2}}+\frac{3}{q^{5/2}}-\frac{4}{q^{3/2}}+\frac{2}{q^{13/2}}-\frac{3}{q^{11/2}}-\sqrt{q}+\frac{2}{\sqrt{q}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^7 z^{-1} -z^3 a^5+2 a^5 z^{-1} +z^5 a^3+3 z^3 a^3+2 z a^3-z^3 a-2 z a-a z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^2 a^8+2 a^8-z^5 a^7-z^3 a^7-a^7 z^{-1} -2 z^6 a^6+4 z^4 a^6-8 z^2 a^6+5 a^6-z^7 a^5-z^5 a^5+4 z^3 a^5-z a^5-2 a^5 z^{-1} -4 z^6 a^4+9 z^4 a^4-6 z^2 a^4+3 a^4-z^7 a^3-z^5 a^3+8 z^3 a^3-4 z a^3-2 z^6 a^2+5 z^4 a^2-z^2 a^2-a^2-z^5 a+3 z^3 a-3 z a+a z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



