L9n9
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9n9 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{60}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9n9's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X7,14,8,15 X15,18,16,5 X11,16,12,17 X17,12,18,13 X13,8,14,9 X2536 X4,9,1,10 |
| Gauss code | {1, -8, 2, -9}, {8, -1, -3, 7, 9, -2, -5, 6, -7, 3, -4, 5, -6, 4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(1) t(2)^3+t(2)^3-t(2)^2-t(1) t(2)+t(1)+1}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{q^{5/2}}-\frac{1}{q^{11/2}}-\frac{1}{q^{15/2}}+\frac{1}{q^{17/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{21/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{11} z^{-1} +2 z a^9+2 a^9 z^{-1} +z a^7-z^5 a^5-5 z^3 a^5-5 z a^5-a^5 z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6 a^{12}+5 z^4 a^{12}-6 z^2 a^{12}+2 a^{12}-z^7 a^{11}+5 z^5 a^{11}-6 z^3 a^{11}+3 z a^{11}-a^{11} z^{-1} -2 z^6 a^{10}+11 z^4 a^{10}-15 z^2 a^{10}+5 a^{10}-z^7 a^9+6 z^5 a^9-10 z^3 a^9+7 z a^9-2 a^9 z^{-1} -z^6 a^8+6 z^4 a^8-8 z^2 a^8+3 a^8+z^3 a^7-z a^7+z^2 a^6-a^6-z^5 a^5+5 z^3 a^5-5 z a^5+a^5 z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



