The trefoil is perhaps the easiest knot to find in "nature", and is topologically equivalent to the interlaced form of the common Christian and pagan "triquetra" symbol [12]:
Logo of Caixa Geral de Depositos, Lisboa [1]
|
A knot consists of two harts in Kolam [2]
|
A basic form of the interlaced Triquetra; as a Christian symbol, it refers to the Trinity
|
|
Further images...
Trefoil/triquetra without outside corners (made from straight lines and 240° circular arcs)
|
Triquetra made from circular arc ribbons
|
|
|
|
A trefoil near the Hollander York Gallery [4]
|
Trefoil of three intersecting circles
|
Trefoil depicted in non-threefold form
|
3D depiction in non-threefold form
|
A hagfish tying itself in a knot to escape capture. [5]
|
One version of the Germanic "Valknut" symbol
|
|
|
In the form of an architectural trefoil
|
|
Alternate Valknut depiction
|
Simple overhand knot of practical knot-tying
|
Tightly folded pentagonal overhand knot
|
Visually fancier square trefoil
|
Trefoil knot as impossible object
|
Logo of the Caixa Geral de Depósitos with white background
|
The NeverEnding Story logo is a connected sum of two trefoils. [7]
|
Mike Hutchings' Rope Trick [8]
|
Thurston's Trefoil - Figure Eight Trick [9]
|
|
|
Non-prime (compound) versions
Two trefoils (single-closed-loop version of the "granny knot" of practical knot-tying).
Two trefoils (single-closed-loop version of the "square knot" of practical knot-tying)
Three trefoils (symmetrical).
Four trefoils (Celtic or pseudo-Celtic decorative knot which fits in square)
Three trefoils along a closed loop which itself is knotted as a trefoil.
Sum of four trefoils, Multan, Pakistan
For configurations of two trefoils along a closed loop which are prime, see 8_15 and 10_120. For a configuration of three trefoils along a closed loop which is prime, see K13a248. For a prime link consisting of two joined trefoils, see L10a108.
Knot presentations
Minimum Braid Representative
|
A Morse Link Presentation
|
An Arc Presentation
|
Length is 3, width is 2,
Braid index is 2
|
|
[{5, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 1}]
|
[edit Notes on presentations of 3 1]
|
|
A part of a knot and a part of a graph.
|
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3641 X5263
|
Out[5]=
|
-1, 3, -2, 1, -3, 2
|
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
In[11]:=
|
Show[BraidPlot[br]]
|
In[12]:=
|
Show[DrawMorseLink[K]]
|
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{5, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 1}]
|
Four dimensional invariants
Polynomial invariants
Further Quantum Invariants
Further quantum knot invariants for 3_1.
The braid index of 3_1 is only 2, so it's easy to calculate lots of quantum invariants.
A1 Invariants.
Weight
|
Invariant
|
1
|
|
2
|
|
3
|
|
4
|
|
5
|
|
6
|
|
8
|
|
A2 Invariants.
Weight
|
Invariant
|
0,1
|
|
0,2
|
|
1,0
|
|
1,1
|
|
2,0
|
|
3,0
|
|
A3 Invariants.
Weight
|
Invariant
|
0,0,1
|
|
0,1,0
|
|
1,0,0
|
|
1,0,1
|
|
A4 Invariants.
Weight
|
Invariant
|
0,0,0,1
|
|
0,1,0,0
|
|
1,0,0,0
|
|
A5 Invariants.
Weight
|
Invariant
|
0,0,0,0,1
|
|
1,0,0,0,0
|
|
A6 Invariants.
Weight
|
Invariant
|
0,0,0,0,0,1
|
|
1,0,0,0,0,0
|
|
B2 Invariants.
Weight
|
Invariant
|
0,1
|
|
1,0
|
|
B3 Invariants.
Weight
|
Invariant
|
1,0,0
|
|
B4 Invariants.
Weight
|
Invariant
|
1,0,0,0
|
|
B5 Invariants.
Weight
|
Invariant
|
1,0,0,0,0
|
|
C3 Invariants.
Weight
|
Invariant
|
1,0,0
|
|
C4 Invariants.
Weight
|
Invariant
|
1,0,0,0
|
|
D4 Invariants.
Weight
|
Invariant
|
0,1,0,0
|
|
1,0,0,0
|
|
G2 Invariants.
Weight
|
Invariant
|
0,1
|
|
1,0
|
|
.
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot
5_2) as the notebook
PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
|
Out[5]=
|
|
In[6]:=
|
Alexander[K, 2][t]
|
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
|
In[10]:=
|
Kauffman[K][a, z]
|
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial:
{}
Same Jones Polynomial (up to mirroring, ):
{}
Computer Talk
The above data is available with the
Mathematica package
KnotTheory`
. Your input (in
red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , }
|
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
V2,1 through V6,9:
|
V2,1
|
V3,1
|
V4,1
|
V4,2
|
V4,3
|
V5,1
|
V5,2
|
V5,3
|
V5,4
|
V6,1
|
V6,2
|
V6,3
|
V6,4
|
V6,5
|
V6,6
|
V6,7
|
V6,8
|
V6,9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 3 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
|
|
-3 | -2 | -1 | 0 | χ |
-1 | | | | 1 | 1 |
-3 | | | | 1 | 1 |
-5 | | 1 | | | 1 |
-7 | | | | | 0 |
-9 | 1 | | | | -1 |
|
The Coloured Jones Polynomials