6 1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 41: Line 41:
{{4D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Polynomial Invariants}}

== "Similar" Knots (within the Atlas) ==

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[9_46]], [[K11n67]], [[K11n97]], [[K11n139]], ...}

{{Vassiliev Invariants}}
{{Vassiliev Invariants}}



Revision as of 16:11, 29 August 2005

5 2.gif

5_2

6 2.gif

6_2

6 1.gif Visit 6 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 6 1's page at Knotilus!

Visit 6 1's page at the original Knot Atlas!

6_1 is also known as "Stevedore's Knot" (see e.g. [1]), and as the pretzel knot P(5,-1,-1).



A Kolam of a 3x3 dot array
3D depiction
Polygonal depiction
Simple square depiction
An other one
Necklace

Knot presentations

Planar diagram presentation X1425 X7,10,8,11 X3948 X9,3,10,2 X5,12,6,1 X11,6,12,7
Gauss code -1, 4, -3, 1, -5, 6, -2, 3, -4, 2, -6, 5
Dowker-Thistlethwaite code 4 8 12 10 2 6
Conway Notation [42]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 7, width is 4.

Braid index is 4.

A Morse Link Presentation:

6 1 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-5][-3]
Hyperbolic Volume 3.16396
A-Polynomial See Data:6 1/A-polynomial

[edit Notes for 6 1's three dimensional invariants]
6_1 is a ribbon knot (drawings by Yoko Mizuma):

a ribbon diagram
isotopy to a ribbon
6_1 has two slice disks, by Scott Carter
Scott Carter notes that 6_1 bounds two distinct slice disks. He says: "this was spoken of in Fox's Example 10, 11, and 12 in a Quick Trip through Knot Theory ... BTW, the cover of Carter and Saito's Knotted Surfaces and Their Diagrams contains an illustration of such a slice disk". A picture is on the right.

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 6 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 9, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_46, K11n67, K11n97, K11n139, ...}

Vassiliev invariants

V2 and V3: (-2, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 6 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
5      11
3       0
1    21 1
-1   11  0
-3   1   -1
-5 11    0
-7       0
-91      1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 29, 2005, 15:27:48)...
In[2]:=
Crossings[Knot[6, 1]]
Out[2]=  
6
In[3]:=
PD[Knot[6, 1]]
Out[3]=  
PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], 
  X[5, 12, 6, 1], X[11, 6, 12, 7]]
In[4]:=
GaussCode[Knot[6, 1]]
Out[4]=  
GaussCode[-1, 4, -3, 1, -5, 6, -2, 3, -4, 2, -6, 5]
In[5]:=
BR[Knot[6, 1]]
Out[5]=  
BR[4, {-1, -1, -2, 1, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[6, 1]][t]
Out[6]=  
    2

5 - - - 2 t

t
In[7]:=
Conway[Knot[6, 1]][z]
Out[7]=  
       2
1 - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[6, 1], Knot[9, 46], Knot[11, NonAlternating, 67], 
  Knot[11, NonAlternating, 97], Knot[11, NonAlternating, 139]}
In[9]:=
{KnotDet[Knot[6, 1]], KnotSignature[Knot[6, 1]]}
Out[9]=  
{9, 0}
In[10]:=
J=Jones[Knot[6, 1]][q]
Out[10]=  
     -4    -3    -2   2        2

2 + q - q + q - - - q + q

q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[6, 1]}
In[12]:=
A2Invariant[Knot[6, 1]][q]
Out[12]=  
 -14    -12    -6    -4    2    6    8
q    + q    - q   - q   + q  + q  + q
In[13]:=
Kauffman[Knot[6, 1]][a, z]
Out[13]=  
                                   2                        3
 -2    2    4              3     z       2  2      4  2   z

-a + a + a + 2 a z + 2 a z + -- - 4 a z - 3 a z + -- -

                                  2                       a
                                 a

      3      3  3    4      2  4    4  4      5    3  5
2 a z - 3 a z + z + 2 a z + a z + a z + a z
In[14]:=
{Vassiliev[2][Knot[6, 1]], Vassiliev[3][Knot[6, 1]]}
Out[14]=  
{-2, 1}
In[15]:=
Kh[Knot[6, 1]][q, t]
Out[15]=  
1           1       1       1      1      1           5  2

- + 2 q + ----- + ----- + ----- + ---- + --- + q t + q t q 9 4 5 3 5 2 3 q t

q t q t q t q t

See/edit the Rolfsen_Splice_Template.