6 2

From Knot Atlas
Jump to navigationJump to search

6 1.gif

6_1

6 3.gif

6_3

6 2.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 6 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 6 2 at Knotilus!

Dror likes to call 6_2 "The Miller Institute Knot", as it is the logo of the Miller Institute for Basic Research.

The bowline knot of practical knot tying deforms to 6_2.

It looks like the crabber's eye knot of practical knot tying deforms to 6_2 also, although the bowline and crabber's eye knot are considered different knots in practical knot tying, given how they are tied, and insofar as how they carry load differently based upon that.

The Miller Institute Mug [1]
Simple square depiction
3D depiction

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7
Gauss code -1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5
Dowker-Thistlethwaite code 4 8 10 12 2 6
Conway Notation [312]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 6, width is 3,

Braid index is 3

6 2 ML.gif 6 2 AP.gif
[{8, 2}, {1, 6}, {7, 3}, {2, 4}, {6, 8}, {3, 5}, {4, 7}, {5, 1}]

[edit Notes on presentations of 6 2]

Knot 6_2.
A graph, knot 6_2.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-7][-1]
Hyperbolic Volume 4.40083
A-Polynomial See Data:6 2/A-polynomial

[edit Notes for 6 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 6 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 11, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 6 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
3      11
1       0
-1    21 1
-3   11  0
-5  11   0
-7 11    0
-9 1     -1
-111      1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials