Finite Type (Vassiliev) Invariants: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 22: Line 22:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics1|n=2}}
{{Graphics1|n=2}}
<pre style="color: red; border: 0px; padding: 0em"><nowiki>ListPlot[
Show[ListPlot[
Join @@ Table[
Join @@ Table[
K = Knot[10, k] ; v2 = Vassiliev[2][K]; v3 = Vassiliev[3][K];
K = Knot[10, k] ; v2 = Vassiliev[2][K]; v3 = Vassiliev[3][K];
Line 29: Line 29:
],
],
PlotStyle -> PointSize[0.02], PlotRange -> All, AspectRatio -> 1
PlotStyle -> PointSize[0.02], PlotRange -> All, AspectRatio -> 1
]</nowiki></pre>
]]
{{Graphics2|n=2|imagename=Finite_Type_Vassiliev_Invariants_Out_2.gif}}
{{Graphics2|n=2|imagename=Finite_Type_Vassiliev_Invariants_Out_2.gif}}
<!--END-->
<!--END-->

Revision as of 23:16, 28 August 2005


(For In[1] see Setup)

In[1]:= ?Vassiliev

Vassiliev[2][K] computes the (standardly normalized) type 2 Vassiliev invariant of the knot K, i.e., the coefficient of z^2 in Conway[K][z]. Vassiliev[3][K] computes the (standardly normalized) type 3 Vassiliev invariant of the knot K, i.e., 3J(1)-(1/36)J'(1) where J is the Jones polynomial of K.

Thus, for example, let us reproduce Willerton's "fish" (arXiv:math.GT/0104061), the result of plotting the values of against the values of , where is the (standardly normalized) type 2 invariant of , is the (standardly normalized) type 3 invariant of , and where runs over a set of knots with equal crossing numbers (10, in the example below):

In[2]:=
ListPlot[
  Join @@ Table[
    K = Knot[10, k] ; v2 = Vassiliev[2][K]; v3 = Vassiliev[3][K];
    {{v2, v3}, {v2, -v3}},
    {k, 165}
  ],
  PlotStyle -> PointSize[0.02], PlotRange -> All, AspectRatio -> 1
]
Finite Type Vassiliev Invariants Out 2.gif
Out[2]= -Graphics-