L11n398

From Knot Atlas
Revision as of 13:41, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n397.gif

L11n397

L11n399.gif

L11n399

L11n398.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n398 at Knotilus!


Link Presentations

[edit Notes on L11n398's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X15,22,16,19 X7,20,8,21 X19,8,20,9 X13,18,14,5 X11,14,12,15 X17,12,18,13 X21,16,22,17 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {-5, 4, -9, 3}, {10, -1, -4, 5, 11, -2, -7, 8, -6, 7, -3, 9, -8, 6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n398 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -4 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-5           11
-7           11
-9        21  -1
-11       3    3
-13      451   0
-15     31     2
-17    241     1
-19   43       1
-21  13        2
-23 13         -2
-25 1          1
-271           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n397.gif

L11n397

L11n399.gif

L11n399