L11n398

From Knot Atlas
Jump to: navigation, search

L11n397.gif

L11n397

L11n399.gif

L11n399

Contents

L11n398.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n398 at Knotilus!


Link Presentations

[edit Notes on L11n398's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X15,22,16,19 X7,20,8,21 X19,8,20,9 X13,18,14,5 X11,14,12,15 X17,12,18,13 X21,16,22,17 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {-5, 4, -9, 3}, {10, -1, -4, 5, 11, -2, -7, 8, -6, 7, -3, 9, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n398 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(w-1) \left(u v w^3+u v w^2-u v w+u v-u w^2+u w+v w^3-v w^2+w^4-w^3+w^2+w\right)}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial  q^{-3} - q^{-5} +4 q^{-6} -4 q^{-7} +6 q^{-8} -5 q^{-9} +6 q^{-10} -4 q^{-11} +2 q^{-12} - q^{-13} (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^{14} z^{-2} +4 a^{12} z^{-2} +4 a^{12}-5 z^2 a^{10}-5 a^{10} z^{-2} -9 a^{10}+z^4 a^8+z^2 a^8+2 a^8 z^{-2} +2 a^8+z^6 a^6+6 z^4 a^6+8 z^2 a^6+3 a^6 (db)
Kauffman polynomial z^7 a^{15}-5 z^5 a^{15}+8 z^3 a^{15}-5 z a^{15}+a^{15} z^{-1} +2 z^8 a^{14}-9 z^6 a^{14}+12 z^4 a^{14}-8 z^2 a^{14}-a^{14} z^{-2} +4 a^{14}+z^9 a^{13}+z^7 a^{13}-21 z^5 a^{13}+36 z^3 a^{13}-23 z a^{13}+5 a^{13} z^{-1} +6 z^8 a^{12}-28 z^6 a^{12}+41 z^4 a^{12}-34 z^2 a^{12}-4 a^{12} z^{-2} +18 a^{12}+z^9 a^{11}+3 z^7 a^{11}-32 z^5 a^{11}+57 z^3 a^{11}-39 z a^{11}+9 a^{11} z^{-1} +4 z^8 a^{10}-21 z^6 a^{10}+38 z^4 a^{10}-37 z^2 a^{10}-5 a^{10} z^{-2} +21 a^{10}+3 z^7 a^9-17 z^5 a^9+30 z^3 a^9-20 z a^9+5 a^9 z^{-1} -z^6 a^8+3 z^4 a^8-3 z^2 a^8-2 a^8 z^{-2} +5 a^8-z^5 a^7+z^3 a^7+z a^7+z^6 a^6-6 z^4 a^6+8 z^2 a^6-3 a^6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-5           11
-7           11
-9        21  -1
-11       3    3
-13      451   0
-15     31     2
-17    241     1
-19   43       1
-21  13        2
-23 13         -2
-25 1          1
-271           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-7 i=-5 i=-3
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-6 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=-3 {\mathbb Z} {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n397.gif

L11n397

L11n399.gif

L11n399