Naming and Enumeration: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(28 intermediate revisions by 8 users not shown)
Line 8: Line 8:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{HelpLine|
n = 1 |
n = 2 |
in = <nowiki>Knot</nowiki> |
in = <nowiki>Knot</nowiki> |
out= <nowiki>Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[11, Alternating, k] denotes the kth alternating 11-crossing knot in the Hoste-Thistlethwaite table. Knot[11, NonAlternating, k] denotes the kth non alternating 11-crossing knot in the Hoste-Thistlethwaite table.</nowiki>}}
out= <nowiki>Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[n, Alternating, k] (for n between 11 and 16) denotes the kth alternating n-crossing knot in the Hoste-Thistlethwaite table.
Knot[n, NonAlternating, k] denotes the kth non alternating n-crossing knot in the Hoste-Thistlethwaite table.</nowiki>}}
<!--END-->
<!--END-->


Line 16: Line 17:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{HelpLine|
n = 2 |
n = 3 |
in = <nowiki>Link</nowiki> |
in = <nowiki>Link</nowiki> |
out= <nowiki>Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.</nowiki>}}
out= <nowiki>Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table.
Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.</nowiki>}}
<!--END-->
<!--END-->

{{Knot Image Pair|6_1|gif|9_46|gif}}


Thus, for example, let us verify that the knots [[6_1]] and [[9_46]] have the same Alexander polynomial:
Thus, for example, let us verify that the knots [[6_1]] and [[9_46]] have the same Alexander polynomial:
Line 26: Line 30:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 3 |
n = 4 |
in = <nowiki>Alexander[Knot[6, 1]][t]</nowiki> |
in = <nowiki>Alexander[Knot[6, 1]][t]</nowiki> |
out= <nowiki> 2
out= <nowiki> 2
Line 32: Line 36:
t</nowiki>}}
t</nowiki>}}
<!--END-->
<!--END-->



<!--$$Alexander[Knot[9, 46]][t]$$-->
<!--$$Alexander[Knot[9, 46]][t]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 4 |
n = 5 |
in = <nowiki>Alexander[Knot[9, 46]][t]</nowiki> |
in = <nowiki>Alexander[Knot[9, 46]][t]</nowiki> |
out= <nowiki> 2
out= <nowiki> 2
Line 43: Line 46:
t</nowiki>}}
t</nowiki>}}
<!--END-->
<!--END-->

{{Knot Image|L6a4|gif}}


We can also check that the Borromean rings, [[L6a4]] in the Thistlethwaite table, is a 3-component link:
We can also check that the Borromean rings, [[L6a4]] in the Thistlethwaite table, is a 3-component link:
Line 49: Line 54:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 5 |
n = 6 |
in = <nowiki>Length[Skeleton[Link[6, Alternating, 4]]]</nowiki> |
in = <nowiki>Length[Skeleton[Link[6, Alternating, 4]]]</nowiki> |
out= <nowiki>3</nowiki>}}
out= <nowiki>3</nowiki>}}
Line 57: Line 62:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{HelpLine|
n = 6 |
n = 7 |
in = <nowiki>AllKnots</nowiki> |
in = <nowiki>AllKnots</nowiki> |
out= <nowiki>AllKnots[] return a list of all the named knots known to KnotTheory.m.</nowiki>}}
out= <nowiki>AllKnots[] return a list of all knots with up to 11 crossings. AllKnots[n_] returns a list of all knots with n crossings, up to 16. AllKnots[{n_, m_}] returns a list of all knots with between n and m crossings, and AllKnots[n_, Alternating&#124;NonAlternating] returns all knots with n crossings of the specified type.</nowiki>}}
<!--END-->
<!--END-->


Line 65: Line 70:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{HelpLine|
n = 7 |
n = 8 |
in = <nowiki>AllLinks</nowiki> |
in = <nowiki>AllLinks</nowiki> |
out= <nowiki>AllLinks[] return a list of all the named links known to KnotTheory.m.</nowiki>}}
out= <nowiki>AllLinks[] return a list of all links with up to 11 crossings. AllLinks[n_] returns a list of all links with n crossings, up to 12.</nowiki>}}
<!--END-->
<!--END-->


Thus at the moment there are 802 knots and 1424 links known to <code>KnotTheory`</code>:
Thus at the moment there are 1701936 knots and 5700 links known to <code>KnotTheory`</code>:


<!--$$Length /@ {AllKnots[], AllLinks[]}$$-->
<!--$$Length /@ {AllKnots[{0,16}], AllLinks[{2,12}]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 8 |
n = 9 |
in = <nowiki>Length /@ {AllKnots[], AllLinks[]}</nowiki> |
in = <nowiki>Length /@ {AllKnots[{0,16}], AllLinks[{2,12}]}</nowiki> |
out= <nowiki>{802, 1424}</nowiki>}}
out= <nowiki>{1701936, 5700}</nowiki>}}
<!--END-->
<!--END-->


Line 85: Line 90:
n = 10 |
n = 10 |
in = <nowiki>Show[DrawPD[Knot[13, NonAlternating, 5016], {Gap -> 0.025}]]</nowiki> |
in = <nowiki>Show[DrawPD[Knot[13, NonAlternating, 5016], {Gap -> 0.025}]]</nowiki> |
img= Naming_and_Enumeration_Out_10.gif |
out= <nowiki>-Graphics-</nowiki>}}
out= <nowiki>-Graphics-</nowiki>}}
img= Naming_and_Enumeration_Out_9.gif}}
<!--END-->
<!--END-->


(Shumakovitch had noticed that this nice knot has interesting Khovanov homology; see {{ref|Shumakovitch}}).
(Shumakovitch had noticed that this nice knot has interesting Khovanov homology; see {{ref|Shumakovitch}}).

{{Knot Image|T(5,3)|jpg}}


In addition to the tables, KnotTheory` also knows about torus knots:
In addition to the tables, KnotTheory` also knows about torus knots:
Line 99: Line 106:
in = <nowiki>TorusKnot</nowiki> |
in = <nowiki>TorusKnot</nowiki> |
out= <nowiki>TorusKnot[m, n] represents the (m,n) torus knot.</nowiki>}}
out= <nowiki>TorusKnot[m, n] represents the (m,n) torus knot.</nowiki>}}
<!--END-->
<!--$$?TorusKnots$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 12 |
in = <nowiki>TorusKnots</nowiki> |
out= <nowiki>TorusKnots[n_] returns a list of all torus knots with up to n crossings.</nowiki>}}
<!--END-->
<!--END-->


For example, the torus knots [[T(5,3)]] and [[T(3,5)]] have different presentations with different numbers of crossings, but they are in fact isotopic, and hence they have the same invariants (and in particular the same type 3 Vassiliev invariant <math>V_3</math>):
For example, the torus knots [[T(5,3)]] and T(3,5) have different presentations with different numbers of crossings, but they are in fact isotopic, and hence they have the same invariants (and in particular the same type 3 Vassiliev invariant <math>V_3</math>):


<!--$$Crossings /@ {TorusKnot[5,3], TorusKnot[3, 5]}$$-->
<!--$$Crossings /@ {TorusKnot[5, 3], TorusKnot[3, 5]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 12 |
n = 13 |
in = <nowiki>Crossings /@ {TorusKnot[5,3], TorusKnot[3, 5]}</nowiki> |
in = <nowiki>Crossings /@ {TorusKnot[5, 3], TorusKnot[3, 5]}</nowiki> |
out= <nowiki>{10, 12}</nowiki>}}
out= <nowiki>{10, 12}</nowiki>}}
<!--END-->
<!--END-->


<!--$$Vassiliev[3] /@ {TorusKnot[5,3], TorusKnot[3, 5]}$$-->
<!--$$Vassiliev[3] /@ {TorusKnot[5, 3], TorusKnot[3, 5]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 13 |
n = 14 |
in = <nowiki>Vassiliev[3] /@ {TorusKnot[5,3], TorusKnot[3, 5]}</nowiki> |
in = <nowiki>Vassiliev[3] /@ {TorusKnot[5, 3], TorusKnot[3, 5]}</nowiki> |
out= <nowiki>{20, 20}</nowiki>}}
out= <nowiki>{20, 20}</nowiki>}}
<!--END-->
<!--END-->
Line 121: Line 135:
KnotTheory` knows how to plot torus knots; see [[Drawing with TubePlot]].
KnotTheory` knows how to plot torus knots; see [[Drawing with TubePlot]].


You can also use the function Knot to parse certain string representations of named knots:
== References==

<!--$$Knot /@ {"K11a14", "11a_14", "L8a1", "T(3,5)"}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 15 |
in = <nowiki>Knot /@ {"K11a14", "11a_14", "L8a1", "T(3,5)"}</nowiki> |
out= <nowiki>{Knot[11, Alternating, 14], If[11 a <= 10 &&
14 <= NumberOfKnots[11 a, Alternating] +
NumberOfKnots[11 a, NonAlternating],
Knot @@ KnotTheory`Naming`s$3008], Link[8, Alternating, 1],
TorusKnot[3, 5]}</nowiki>}}
<!--END-->

In the opposite direction, the function NameString produces the standard name for a knot, used throughout the Knot Atlas.

<!--$$NameString /@ {Knot[11, Alternating, 14], TorusKnot[3,5]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 16 |
in = <nowiki>NameString /@ {Knot[11, Alternating, 14], TorusKnot[3,5]}</nowiki> |
out= <nowiki>{K11a14, T(3,5)}</nowiki>}}
<!--END-->

==References==


{{note|Rolfsen}} D. Rolfsen, ''Knots and Links'', Publish or Perish, Mathematics Lecture Series 7, Wilmington 1976.
{{note|Rolfsen}} D. Rolfsen, ''Knots and Links'', Publish or Perish, Mathematics Lecture Series 7, Wilmington 1976.

Latest revision as of 18:18, 21 February 2013


KnotTheory` comes loaded with some knot tables; currently, the Rolfsen table of prime knots with up to 10 crossings [Rolfsen], the Hoste-Thistlethwaite tables of prime knots with up to 16 crossings and the Thistlethwaite table of prime links with up to 11 crossings (see Knotscape):

(For In[1] see Setup)

In[2]:= ?Knot
Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[n, Alternating, k] (for n between 11 and 16) denotes the kth alternating n-crossing knot in the Hoste-Thistlethwaite table. Knot[n, NonAlternating, k] denotes the kth non alternating n-crossing knot in the Hoste-Thistlethwaite table.
In[3]:= ?Link
Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table.
6 1.gif
6_1
9 46.gif
9_46

Thus, for example, let us verify that the knots 6_1 and 9_46 have the same Alexander polynomial:

In[4]:= Alexander[Knot[6, 1]][t]
Out[4]= 2 5 - - - 2 t t
In[5]:= Alexander[Knot[9, 46]][t]
Out[5]= 2 5 - - - 2 t t
L6a4.gif
L6a4

We can also check that the Borromean rings, L6a4 in the Thistlethwaite table, is a 3-component link:

In[6]:= Length[Skeleton[Link[6, Alternating, 4]]]
Out[6]= 3
In[7]:= ?AllKnots
AllKnots[] return a list of all knots with up to 11 crossings. AllKnots[n_] returns a list of all knots with n crossings, up to 16. AllKnots[{n_, m_}] returns a list of all knots with between n and m crossings, and AllKnots[n_, Alternating|NonAlternating] returns all knots with n crossings of the specified type.
In[8]:= ?AllLinks
AllLinks[] return a list of all links with up to 11 crossings. AllLinks[n_] returns a list of all links with n crossings, up to 12.

Thus at the moment there are 1701936 knots and 5700 links known to KnotTheory`:

In[9]:= Length /@ {AllKnots[{0,16}], AllLinks[{2,12}]}
Out[9]= {1701936, 5700}
In[10]:= Show[DrawPD[Knot[13, NonAlternating, 5016], {Gap -> 0.025}]]
Naming and Enumeration Out 10.gif
Out[10]= -Graphics-

(Shumakovitch had noticed that this nice knot has interesting Khovanov homology; see [Shumakovitch]).

T(5,3).jpg
T(5,3)

In addition to the tables, KnotTheory` also knows about torus knots:

In[11]:= ?TorusKnot
TorusKnot[m, n] represents the (m,n) torus knot.
In[12]:= ?TorusKnots
TorusKnots[n_] returns a list of all torus knots with up to n crossings.

For example, the torus knots T(5,3) and T(3,5) have different presentations with different numbers of crossings, but they are in fact isotopic, and hence they have the same invariants (and in particular the same type 3 Vassiliev invariant ):

In[13]:= Crossings /@ {TorusKnot[5, 3], TorusKnot[3, 5]}
Out[13]= {10, 12}
In[14]:= Vassiliev[3] /@ {TorusKnot[5, 3], TorusKnot[3, 5]}
Out[14]= {20, 20}

KnotTheory` knows how to plot torus knots; see Drawing with TubePlot.

You can also use the function Knot to parse certain string representations of named knots:

In[15]:= Knot /@ {"K11a14", "11a_14", "L8a1", "T(3,5)"}
Out[15]= {Knot[11, Alternating, 14], If[11 a <= 10 && 14 <= NumberOfKnots[11 a, Alternating] + NumberOfKnots[11 a, NonAlternating], Knot @@ KnotTheory`Naming`s$3008], Link[8, Alternating, 1], TorusKnot[3, 5]}

In the opposite direction, the function NameString produces the standard name for a knot, used throughout the Knot Atlas.

In[16]:= NameString /@ {Knot[11, Alternating, 14], TorusKnot[3,5]}
Out[16]= {K11a14, T(3,5)}

References

[Rolfsen] ^  D. Rolfsen, Knots and Links, Publish or Perish, Mathematics Lecture Series 7, Wilmington 1976.

[Shumakovitch] ^  A. Shumakovitch, Torsion of the Khovanov Homology, arXiv:math.GT/0405474.