The Kauffman Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 11: Line 11:
(here <math>T_1</math>, <math>T_2</math>, <math>T_3</math> and <math>T_4</math> are [[Image:backoverslash symbol.gif|20px]], [[Image:slashoverback symbol.gif|20px]], [[Image:vsmoothing symbol.gif|20px]] and [[Image:hsmoothing symbol.gif|20px]], respectively), and by the initial condition <math>L(U)=1</math> where <math>U</math> is the unknot [[Image:BigCirc symbol.gif|20px]].
(here <math>T_1</math>, <math>T_2</math>, <math>T_3</math> and <math>T_4</math> are [[Image:backoverslash symbol.gif|20px]], [[Image:slashoverback symbol.gif|20px]], [[Image:vsmoothing symbol.gif|20px]] and [[Image:hsmoothing symbol.gif|20px]], respectively), and by the initial condition <math>L(U)=1</math> where <math>U</math> is the unknot [[Image:BigCirc symbol.gif|20px]].


{\tt KnotTheory`} knows about the Kauffman polynomial:
<code>KnotTheory`</code> knows about the Kauffman polynomial:


{{Startup Note}}
\latexhtml{\small (for {\tt In[1]} see
Section~\ref{sec:Setup}.)}{\htmlref{{\tt In[1]}}{sec:Setup}}
%<* InOut[1] *>


<!--$$?Kauffman$$-->
\index{Kauffman, Louis} \index{Morrison, Scott}
<!--END-->
<* HelpBox[Kauffman] *>


Thus, for example, here's the Kauffman polynomial of the knot
Thus, for example, here's the Kauffman polynomial of the knot [[5_2]]:
<!--$$Kauffman[Knot[5, 2]][a, z]$$-->
\hlink{../Knots/5.2.html}{$5_2$}:
<!--END-->


It is well known that the Jones polynomial is related to the Kauffman polynomial via
<*InOut@"Kauffman[Knot[5, 2]][a, z]"*>
\vskip 6pt


<center><math>J(L)(q) = (-1)^cL(K)(-q^{-3/4},\,q^{1/4}+q^{-1/4})</math>,</center>
\index{Jones polynomial} \index{Jones@{\tt Jones}}
It is well known that the Jones polynomial is related to the Kauffman
polynomial via
\[ J(L)(q) = (-1)^cL(K)(-q^{-3/4},\,q^{1/4}+q^{-1/4}), \]
where $K$ is some knot or link and where $c$ is the number of components of
$K$. Let us verify this fact for the torus knot
\hlink{../TorusKnots/8.3.html}{$T(8,3)$}:


where <math>K</math> is some knot or link and where <math>c</math> is the number of components of <math>K</math>. Let us verify this fact for the torus knot [[T(8,3)]]:
<*InOut@"K = TorusKnot[8, 3];"*>

<*InOut@"Simplify[{\n
<!--$$K = TorusKnot[8, 3];$$-->
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],\n
<!--END-->
Jones[K][q]\n

}]"*>
<!--$$Simplify[{
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],
Jones[K][q]
}]$$-->
<!--END-->


{{note|Kauffman}} L. H. Kauffman, ''An invariant of regular isotopy'', Trans. Amer. Math. Soc. '''312''' (1990) 417-471.
{{note|Kauffman}} L. H. Kauffman, ''An invariant of regular isotopy'', Trans. Amer. Math. Soc. '''312''' (1990) 417-471.

Revision as of 22:29, 28 August 2005


The Kauffman polynomial (see [Kauffman]) of a knot or link is where is the writhe of (see How is the Jones Polynomial Computed?) and where is the regular isotopy invariant defined by the skein relations

(here is a strand and is the same strand with a kink added) and

(here , , and are Backoverslash symbol.gif, Slashoverback symbol.gif, Vsmoothing symbol.gif and Hsmoothing symbol.gif, respectively), and by the initial condition where is the unknot BigCirc symbol.gif.

KnotTheory` knows about the Kauffman polynomial:

(For In[1] see Setup)


Thus, for example, here's the Kauffman polynomial of the knot 5_2:

It is well known that the Jones polynomial is related to the Kauffman polynomial via

,

where is some knot or link and where is the number of components of . Let us verify this fact for the torus knot T(8,3):


[Kauffman] ^  L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.