The Kauffman Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
m (Reverted edit of 66.150.105.20, changed back to last version by DrorsRobot)
No edit summary
Line 3: Line 3:
The ''Kauffman polynomial'' <math>F(K)(a,z)</math> (see {{ref|Kauffman}}) of a knot or link <math>K</math> is <math>a^{-w(K)}L(K)</math> where <math>w(L)</math> is the writhe of <math>K</math> (see [[The_Jones_Polynomial#How_is_the_Jones_polynomial_computed.3F|How is the Jones Polynomial Computed?]]) and where <math>L(K)</math> is the regular isotopy invariant defined by the skein relations
The ''Kauffman polynomial'' <math>F(K)(a,z)</math> (see {{ref|Kauffman}}) of a knot or link <math>K</math> is <math>a^{-w(K)}L(K)</math> where <math>w(L)</math> is the writhe of <math>K</math> (see [[The_Jones_Polynomial#How_is_the_Jones_polynomial_computed.3F|How is the Jones Polynomial Computed?]]) and where <math>L(K)</math> is the regular isotopy invariant defined by the skein relations


<center><math>L(s_+)=aL(s), \qquad L(s_-)=a^{-1}L(s)</math></center>
<center><math>L(s_ )=aL(s), \qquad L(s_-)=a^{-1}L(s)</math></center>


(here <math>s</math> is a strand and <math>s_\pm</math> is the same strand with a <math>\pm</math> kink added) and
(here <math>s</math> is a strand and <math>s_\pm</math> is the same strand with a <math>\pm</math> kink added) and


<center><math>L(\backoverslash)+L(\slashoverback) = z\left(L(\smoothing)+L(\hsmoothing)\right)</math></center>
<center><math>L(\backoverslash) L(\slashoverback) = z\left(L(\smoothing) L(\hsmoothing)\right)</math></center>


and by the initial condition <math>L(U)=1</math> where <math>U</math> is the unknot [[Image:BigCirc symbol.gif|20px]].
and by the initial condition <math>L(U)=1</math> where <math>U</math> is the unknot [[Image:BigCirc symbol.gif|20px]].
Line 32: Line 32:
in = <nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki> |
in = <nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki> |
out= <nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3
out= <nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z +
-a a a - 2 a z - 2 a z a z - a z - 2 a z a z
5 3 7 3 4 4 6 4
5 3 7 3 4 4 6 4
2 a z + a z + a z + a z</nowiki>}}
2 a z a z a z a z</nowiki>}}
<!--END-->
<!--END-->


Line 42: Line 42:
It is well known that the Jones polynomial is related to the Kauffman polynomial via
It is well known that the Jones polynomial is related to the Kauffman polynomial via


<center><math>J(L)(q) = (-1)^cL(K)(-q^{-3/4},\,q^{1/4}+q^{-1/4})</math>,</center>
<center><math>J(L)(q) = (-1)^cL(K)(-q^{-3/4},\,q^{1/4} q^{-1/4})</math>,</center>


where <math>K</math> is some knot or link and where <math>c</math> is the number of components of <math>K</math>. Let us verify this fact for the torus knot [[T(8,3)]]:
where <math>K</math> is some knot or link and where <math>c</math> is the number of components of <math>K</math>. Let us verify this fact for the torus knot [[T(8,3)]]:
Line 54: Line 54:


<!--$$Simplify[{
<!--$$Simplify[{
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4) q^(-1/4)],
Jones[K][q]
Jones[K][q]
}]$$-->
}]$$-->
Line 61: Line 61:
n = 6 |
n = 6 |
in = <nowiki>Simplify[{
in = <nowiki>Simplify[{
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4) q^(-1/4)],
Jones[K][q]
Jones[K][q]
}]</nowiki> |
}]</nowiki> |
out= <nowiki> 7 9 16 7 9 16
out= <nowiki> 7 9 16 7 9 16
{q + q - q , q + q - q }</nowiki>}}
{q q - q , q q - q }</nowiki>}}
<!--END-->
<!--END-->



Revision as of 00:06, 15 June 2007


The Kauffman polynomial (see [Kauffman]) of a knot or link is where is the writhe of (see How is the Jones Polynomial Computed?) and where is the regular isotopy invariant defined by the skein relations

(here is a strand and is the same strand with a kink added) and

Failed to parse (unknown function "\backoverslash"): {\displaystyle L(\backoverslash) L(\slashoverback) = z\left(L(\smoothing) L(\hsmoothing)\right)}

and by the initial condition where is the unknot BigCirc symbol.gif.

KnotTheory` knows about the Kauffman polynomial:

(For In[1] see Setup)

In[2]:= ?Kauffman
Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z.
In[3]:= Kauffman::about
The Kauffman program was written by Scott Morrison.

Thus, for example, here's the Kauffman polynomial of the knot 5_2:

In[4]:= Kauffman[Knot[5, 2]][a, z]
Out[4]= 2 4 6 5 7 2 2 4 2 6 2 3 3 -a a a - 2 a z - 2 a z a z - a z - 2 a z a z 5 3 7 3 4 4 6 4 2 a z a z a z a z
5 2.gif
5_2
T(8,3).jpg
T(8,3)

It is well known that the Jones polynomial is related to the Kauffman polynomial via

,

where is some knot or link and where is the number of components of . Let us verify this fact for the torus knot T(8,3):

In[5]:= K = TorusKnot[8, 3];
In[6]:= Simplify[{ (-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4) q^(-1/4)], Jones[K][q] }]
Out[6]= 7 9 16 7 9 16 {q q - q , q q - q }

[Kauffman] ^  L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.