Three Dimensional Invariants: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 4: Line 4:


<!--$$?SymmetryType$$-->
<!--$$?SymmetryType$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=2|s=SymmetryType}}
{{HelpAndAbout1|n=1|s=SymmetryType}}
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.
{{HelpAndAbout2|n=3|s=SymmetryType}}
{{HelpAndAbout2|n=2|s=SymmetryType}}
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
{{HelpAndAbout3}}
{{HelpAndAbout3}}
Line 15: Line 15:


<!--$$?UnknottingNumber$$-->
<!--$$?UnknottingNumber$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=4|s=UnknottingNumber}}
{{HelpAndAbout1|n=3|s=UnknottingNumber}}
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
{{HelpAndAbout2|n=5|s=UnknottingNumber}}
{{HelpAndAbout2|n=4|s=UnknottingNumber}}
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
{{HelpAndAbout3}}
{{HelpAndAbout3}}
Line 25: Line 25:
<!--$UH = Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer];$--><!--END-->
<!--$UH = Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer];$--><!--END-->


Of the <!--$UH /. _u -> 1$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->512<!--END--> knots whose unknotting number is known to <code>KnotTheory`</code>, <!--$Coefficient[UH, u[1]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->197<!--END--> have unknotting number 1, <!--$Coefficient[UH, u[2]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->247<!--END--> have unknotting number 2, <!--$Coefficient[UH, u[3]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->54<!--END--> have unknotting number 3, <!--$Coefficient[UH, u[4]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->12<!--END--> have unknotting number 4 and <!--$Coefficient[UH, u[5]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->1<!--END--> has unknotting number 5:
Of the <!--$UH /. _u -> 1$--><!--Robot Land, no human edits to "END"-->512<!--END--> knots whose unknotting number is known to <code>KnotTheory`</code>, <!--$Coefficient[UH, u[1]]$--><!--Robot Land, no human edits to "END"-->197<!--END--> have unknotting number 1, <!--$Coefficient[UH, u[2]]$--><!--Robot Land, no human edits to "END"-->247<!--END--> have unknotting number 2, <!--$Coefficient[UH, u[3]]$--><!--Robot Land, no human edits to "END"-->54<!--END--> have unknotting number 3, <!--$Coefficient[UH, u[4]]$--><!--Robot Land, no human edits to "END"-->12<!--END--> have unknotting number 4 and <!--$Coefficient[UH, u[5]]$--><!--Robot Land, no human edits to "END"-->1<!--END--> has unknotting number 5:


<!--$$Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]$$-->
<!--$$Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=6}}
{{InOut1|n=5}}
Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]</nowiki></pre>
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki>u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]</nowiki></pre>
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki>u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]</nowiki></pre>
{{InOut3}}
{{InOut3}}
<!--END-->
<!--END-->


There are <!--$Length[Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
There are <!--$Length[Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->4<!--END--> knots with up to 9 crossings whose unknotting number is unknown:
]$--><!--Robot Land, no human edits to "END"-->4<!--END--> knots with up to 9 crossings whose unknotting number is unknown:


<!--$$Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]$$-->
<!--$$Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=7}}
{{InOut1|n=6}}
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]</nowiki></pre>
{{InOut2|n=7}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}</nowiki></pre>
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}</nowiki></pre>
{{InOut3}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$?ThreeGenus$$-->
<!--$$?ThreeGenus$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=8|s=ThreeGenus}}
{{HelpAndAbout1|n=7|s=ThreeGenus}}
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`.
ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`.
{{HelpAndAbout2|n=9|s=ThreeGenus}}
{{HelpAndAbout2|n=8|s=ThreeGenus}}
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
{{HelpAndAbout3}}
{{HelpAndAbout3}}
Line 58: Line 58:


<!--$$?BridgeIndex$$-->
<!--$$?BridgeIndex$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=10|s=BridgeIndex}}
{{HelpAndAbout1|n=9|s=BridgeIndex}}
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.
BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.
{{HelpAndAbout2|n=11|s=BridgeIndex}}
{{HelpAndAbout2|n=10|s=BridgeIndex}}
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
{{HelpAndAbout3}}
{{HelpAndAbout3}}
Line 69: Line 69:


<!--$$Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]$$-->
<!--$$Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=12}}
{{InOut1|n=11}}
Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]</nowiki></pre>
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7],
{{InOut2|n=11}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7],
Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14],
Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14],
Line 85: Line 85:


<!--$$?SuperBridgeIndex$$-->
<!--$$?SuperBridgeIndex$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=13|s=SuperBridgeIndex}}
{{HelpAndAbout1|n=12|s=SuperBridgeIndex}}
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.
{{HelpAndAbout2|n=14|s=SuperBridgeIndex}}
{{HelpAndAbout2|n=13|s=SuperBridgeIndex}}
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
{{HelpAndAbout3}}
{{HelpAndAbout3}}
Line 94: Line 94:


<!--$$?NakanishiIndex$$-->
<!--$$?NakanishiIndex$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=15|s=NakanishiIndex}}
{{HelpAndAbout1|n=14|s=NakanishiIndex}}
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.
NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.
{{HelpAndAbout2|n=16|s=NakanishiIndex}}
{{HelpAndAbout2|n=15|s=NakanishiIndex}}
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.
{{HelpAndAbout3}}
{{HelpAndAbout3}}
Line 103: Line 103:


<!--$$Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]$$-->
<!--$$Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{In1|n=17}}
{{In1|n=16}}
Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]</nowiki></pre>
{{In2}}
{{In2}}
<!--END-->
<!--END-->


<!--$$Profile[Knot[9,24]]$$-->
<!--$$Profile[Knot[9,24]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=18}}
{{InOut1|n=17}}
Profile[Knot[9,24]]
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Profile[Knot[9,24]]</nowiki></pre>
{{InOut2|n=18}}<pre style="border: 0px; padding: 0em"><nowiki>Profile[Reversible, 1, 3, 3, {4, 6}, 1]</nowiki></pre>
{{InOut2|n=17}}<pre style="border: 0px; padding: 0em"><nowiki>Profile[Reversible, 1, 3, 3, {4, 6}, 1]</nowiki></pre>
{{InOut3}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]$$-->
<!--$$Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=19}}
{{InOut1|n=18}}
Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]</nowiki></pre>
{{InOut2|n=19}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}</nowiki></pre>
{{InOut2|n=18}}<pre style="border: 0px; padding: 0em"><nowiki>{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}</nowiki></pre>
{{InOut3}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Alexander[#][t]& /@ Ks$$-->
<!--$$Alexander[#][t]& /@ Ks$$-->
<!--Robot Land, no human edits to "END"-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=20}}
{{InOut1|n=19}}
Alexander[#][t]& /@ Ks
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[#][t]& /@ Ks</nowiki></pre>
{{InOut2|n=20}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3 -3 5 12 2 3
{{InOut2|n=19}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3 -3 5 12 2 3
{13 - t + -- - -- - 10 t + 5 t - t , -15 + t - -- + -- + 12 t - 5 t + t ,
{13 - t + -- - -- - 10 t + 5 t - t , -15 + t - -- + -- + 12 t - 5 t + t ,
2 t 2 t
2 t 2 t

Revision as of 20:43, 27 August 2005


(For In[1] see Setup)

In[1]:= ?SymmetryType

SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.

In[2]:= SymmetryType::about

The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .

In[3]:= ?UnknottingNumber

UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.

In[4]:= UnknottingNumber::about

The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.


Of the 512 knots whose unknotting number is known to KnotTheory`, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:

In[5]:=
Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]
Out[5]=
u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]

There are 4 knots with up to 9 crossings whose unknotting number is unknown:

In[6]:=
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
Out[6]=
{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}
In[7]:= ?ThreeGenus

ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`.

In[8]:= ThreeGenus::about

The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .

In[9]:= ?BridgeIndex

BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.

In[10]:= BridgeIndex::about

The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:

In[11]:=
Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]
Out[11]=
{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7], 
 
  Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], 
 
  Knot[9, 15], Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], Knot[9, 23], 
 
  Knot[9, 26], Knot[9, 27], Knot[9, 31]}

The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.

In[12]:= ?SuperBridgeIndex

SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.

In[13]:= SuperBridgeIndex::about

The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

In[14]:= ?NakanishiIndex

NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.

In[15]:= NakanishiIndex::about

The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

In[16]:=
Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]
In[17]:=
Profile[Knot[9,24]]
Out[17]=
Profile[Reversible, 1, 3, 3, {4, 6}, 1]
In[18]:=
Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]
Out[18]=
{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}
In[19]:=
Alexander[#][t]& /@ Ks
Out[19]=
       -3   5    10             2    3         -3   5    12             2    3
{13 - t   + -- - -- - 10 t + 5 t  - t , -15 + t   - -- + -- + 12 t - 5 t  + t , 
             2   t                                   2   t
            t                                       t
 
        -3   5    12             2    3        -3   6    16             2    3
  17 - t   + -- - -- - 12 t + 5 t  - t , 23 - t   + -- - -- - 16 t + 6 t  - t }
              2   t                                  2   t
             t                                      t