Three Dimensional Invariants

From Knot Atlas
Revision as of 10:07, 25 August 2005 by Drorbn (talk | contribs)
Jump to navigationJump to search


(For In[1] see Setup)

In[2]:= ?SymmetryType

SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.

In[3]:= SymmetryType::about

The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .

In[4]:= ?UnknottingNumber

UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.

In[5]:= UnknottingNumber::about

The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.


Template:5 1 views <*UH /. _u -> 1*>

512

<splice context="KnotTheory`">Jones[Knot[3,1]]]<mid/>512</splice>

Of the 512 knots whose unknotting number is known to KnotTheory`, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:

In[6]:=

Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]

Out[6]=
u[0] + 197 u[1] + 247 u[2] + 54 u[3] + 12 u[4] + u[5]

There are 4 knots with up to 9 crossings whose unknotting number is unknown:

In[7]:=

Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]

Out[7]=
{Knot[9, 10], Knot[9, 13], Knot[9, 35], Knot[9, 38]}
In[8]:= ?ThreeGenus

ThreeGenus[K] returns the 3-genus of the knot K, if known to KnotTheory`.

In[9]:= ThreeGenus::about

The 3-genus data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .

In[10]:= ?BridgeIndex

BridgeIndex[K] returns the bridge index of the knot K, if known to KnotTheory`.

In[11]:= BridgeIndex::about

The bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:

In[12]:=

Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]

Out[12]=
{Knot[9, 1], Knot[9, 2], Knot[9, 3], Knot[9, 4], Knot[9, 5], Knot[9, 6], Knot[9, 7], 
 
  Knot[9, 8], Knot[9, 9], Knot[9, 10], Knot[9, 11], Knot[9, 12], Knot[9, 13], Knot[9, 14], 
 
  Knot[9, 15], Knot[9, 17], Knot[9, 18], Knot[9, 19], Knot[9, 20], Knot[9, 21], Knot[9, 23], 
 
  Knot[9, 26], Knot[9, 27], Knot[9, 31]}

The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.

In[13]:= ?SuperBridgeIndex

SuperBridgeIndex[K] returns the super bridge index of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.

In[14]:= SuperBridgeIndex::about

The super bridge index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

In[15]:= ?NakanishiIndex

NakanishiIndex[K] returns the Nakanishi index of the knot K, if known to KnotTheory`.

In[16]:= NakanishiIndex::about

The Nakanishi index data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

In[17]:=

Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]

In[18]:=

Profile[Knot[9,24]]

Out[18]=
Profile[Reversible, 1, 3, 3, {4, 6}, 1]
In[19]:=

Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]

Out[19]=
{Knot[9, 24], Knot[9, 28], Knot[9, 30], Knot[9, 34]}
In[20]:=

Alexander[#][t]& /@ Ks

Out[20]=
       -3   5    10             2    3         -3   5    12             2    3
{13 - t   + -- - -- - 10 t + 5 t  - t , -15 + t   - -- + -- + 12 t - 5 t  + t , 
             2   t                                   2   t
            t                                       t
 
        -3   5    12             2    3        -3   6    16             2    3
  17 - t   + -- - -- - 12 t + 5 t  - t , 23 - t   + -- - -- - 16 t + 6 t  - t }
              2   t                                  2   t
             t                                      t