# 10 103 (KnotPlot image) See the full Rolfsen Knot Table. Visit 10 103's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 103 at Knotilus!

### Knot presentations

 Planar diagram presentation X6271 X18,6,19,5 X20,13,1,14 X16,7,17,8 X10,3,11,4 X4,11,5,12 X14,9,15,10 X8,15,9,16 X12,19,13,20 X2,18,3,17 Gauss code 1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, -3 Dowker-Thistlethwaite code 6 10 18 16 14 4 20 8 2 12 Conway Notation [30:2:2]

### Three dimensional invariants

 Symmetry type Reversible Unknotting number 3 3-genus 3 Bridge index 3 Super bridge index Missing Nakanishi index 2 Maximal Thurston-Bennequin number [-10][-2] Hyperbolic Volume 13.8748 A-Polynomial See Data:10 103/A-polynomial

### Four dimensional invariants

 Smooth 4 genus $1$ Topological 4 genus $1$ Concordance genus $1$ Rasmussen s-Invariant 2

### Polynomial invariants

 Alexander polynomial $2 t^3-8 t^2+17 t-21+17 t^{-1} -8 t^{-2} +2 t^{-3}$ Conway polynomial $2 z^6+4 z^4+3 z^2+1$ 2nd Alexander ideal (db, data sources) $\{5,t+1\}$ Determinant and Signature { 75, -2 } Jones polynomial $-q^2+3 q-6+10 q^{-1} -11 q^{-2} +13 q^{-3} -12 q^{-4} +9 q^{-5} -6 q^{-6} +3 q^{-7} - q^{-8}$ HOMFLY-PT polynomial (db, data sources) $-z^4 a^6-2 z^2 a^6-a^6+z^6 a^4+3 z^4 a^4+3 z^2 a^4+z^6 a^2+3 z^4 a^2+4 z^2 a^2+3 a^2-z^4-2 z^2-1$ Kauffman polynomial (db, data sources) $z^5 a^9-2 z^3 a^9+3 z^6 a^8-6 z^4 a^8+z^2 a^8+5 z^7 a^7-12 z^5 a^7+10 z^3 a^7-4 z a^7+5 z^8 a^6-12 z^6 a^6+13 z^4 a^6-6 z^2 a^6+a^6+2 z^9 a^5+3 z^7 a^5-16 z^5 a^5+21 z^3 a^5-6 z a^5+9 z^8 a^4-23 z^6 a^4+25 z^4 a^4-8 z^2 a^4+2 z^9 a^3+2 z^7 a^3-9 z^5 a^3+9 z^3 a^3-2 z a^3+4 z^8 a^2-5 z^6 a^2+2 z^2 a^2-3 a^2+4 z^7 a-5 z^5 a-2 z^3 a+z a+3 z^6-6 z^4+3 z^2-1+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1}$ The A2 invariant $-q^{24}+q^{22}-q^{20}-q^{18}+2 q^{16}-3 q^{14}+q^{12}+q^8+4 q^6-q^4+3 q^2-1- q^{-2} + q^{-4} - q^{-6}$ The G2 invariant $q^{128}-2 q^{126}+4 q^{124}-7 q^{122}+7 q^{120}-6 q^{118}+12 q^{114}-22 q^{112}+35 q^{110}-42 q^{108}+35 q^{106}-15 q^{104}-25 q^{102}+72 q^{100}-108 q^{98}+118 q^{96}-88 q^{94}+18 q^{92}+74 q^{90}-153 q^{88}+184 q^{86}-149 q^{84}+53 q^{82}+55 q^{80}-142 q^{78}+160 q^{76}-106 q^{74}+11 q^{72}+92 q^{70}-143 q^{68}+115 q^{66}-28 q^{64}-92 q^{62}+180 q^{60}-204 q^{58}+150 q^{56}-38 q^{54}-94 q^{52}+208 q^{50}-252 q^{48}+218 q^{46}-117 q^{44}-25 q^{42}+148 q^{40}-206 q^{38}+189 q^{36}-98 q^{34}-12 q^{32}+112 q^{30}-142 q^{28}+98 q^{26}-2 q^{24}-100 q^{22}+159 q^{20}-140 q^{18}+58 q^{16}+52 q^{14}-136 q^{12}+176 q^{10}-149 q^8+80 q^6+3 q^4-78 q^2+111-107 q^{-2} +78 q^{-4} -34 q^{-6} -3 q^{-8} +28 q^{-10} -42 q^{-12} +39 q^{-14} -29 q^{-16} +15 q^{-18} -3 q^{-20} -6 q^{-22} +8 q^{-24} -8 q^{-26} +5 q^{-28} -2 q^{-30} + q^{-32}$