# 10 114 (KnotPlot image) See the full Rolfsen Knot Table. Visit 10 114's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 114 at Knotilus!

### Knot presentations

 Planar diagram presentation X6271 X8394 X18,13,19,14 X20,11,1,12 X12,19,13,20 X2,16,3,15 X4,17,5,18 X10,6,11,5 X14,7,15,8 X16,10,17,9 Gauss code 1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7, -3, 5, -4 Dowker-Thistlethwaite code 6 8 10 14 16 20 18 2 4 12 Conway Notation [8*30]

### Three dimensional invariants

 Symmetry type Reversible Unknotting number 1 3-genus 3 Bridge index 3 Super bridge index Missing Nakanishi index 1 Maximal Thurston-Bennequin number [-7][-5] Hyperbolic Volume 15.3049 A-Polynomial See Data:10 114/A-polynomial

### Four dimensional invariants

 Smooth 4 genus $1$ Topological 4 genus $1$ Concordance genus $3$ Rasmussen s-Invariant 0

### Polynomial invariants

 Alexander polynomial $-2 t^3+10 t^2-21 t+27-21 t^{-1} +10 t^{-2} -2 t^{-3}$ Conway polynomial $-2 z^6-2 z^4+z^2+1$ 2nd Alexander ideal (db, data sources) $\{1\}$ Determinant and Signature { 93, 0 } Jones polynomial $q^4-4 q^3+8 q^2-12 q+15-15 q^{-1} +15 q^{-2} -11 q^{-3} +7 q^{-4} -4 q^{-5} + q^{-6}$ HOMFLY-PT polynomial (db, data sources) $-a^2 z^6-z^6+a^4 z^4-2 a^2 z^4+z^4 a^{-2} -2 z^4+a^4 z^2+z^2 a^{-2} -z^2-a^4+2 a^2$ Kauffman polynomial (db, data sources) $3 a^3 z^9+3 a z^9+6 a^4 z^8+14 a^2 z^8+8 z^8+4 a^5 z^7+2 a^3 z^7+8 a z^7+10 z^7 a^{-1} +a^6 z^6-17 a^4 z^6-35 a^2 z^6+8 z^6 a^{-2} -9 z^6-11 a^5 z^5-21 a^3 z^5-27 a z^5-13 z^5 a^{-1} +4 z^5 a^{-3} -2 a^6 z^4+14 a^4 z^4+26 a^2 z^4-8 z^4 a^{-2} +z^4 a^{-4} +z^4+7 a^5 z^3+18 a^3 z^3+18 a z^3+5 z^3 a^{-1} -2 z^3 a^{-3} -3 a^4 z^2-5 a^2 z^2+2 z^2 a^{-2} -2 a^3 z-3 a z-z a^{-1} -a^4-2 a^2$ The A2 invariant $q^{18}-2 q^{16}-3 q^{10}+4 q^8+2 q^4+2 q^2-2+3 q^{-2} -3 q^{-4} + q^{-6} + q^{-8} -2 q^{-10} + q^{-12}$ The G2 invariant $q^{94}-3 q^{92}+7 q^{90}-14 q^{88}+17 q^{86}-18 q^{84}+7 q^{82}+23 q^{80}-59 q^{78}+102 q^{76}-118 q^{74}+87 q^{72}-8 q^{70}-116 q^{68}+233 q^{66}-288 q^{64}+240 q^{62}-90 q^{60}-114 q^{58}+292 q^{56}-369 q^{54}+304 q^{52}-124 q^{50}-102 q^{48}+262 q^{46}-301 q^{44}+192 q^{42}+8 q^{40}-188 q^{38}+283 q^{36}-240 q^{34}+79 q^{32}+135 q^{30}-323 q^{28}+407 q^{26}-345 q^{24}+160 q^{22}+105 q^{20}-340 q^{18}+471 q^{16}-440 q^{14}+265 q^{12}-9 q^{10}-238 q^8+371 q^6-346 q^4+186 q^2+42-216 q^{-2} +264 q^{-4} -170 q^{-6} -16 q^{-8} +194 q^{-10} -288 q^{-12} +259 q^{-14} -123 q^{-16} -57 q^{-18} +212 q^{-20} -287 q^{-22} +265 q^{-24} -164 q^{-26} +35 q^{-28} +77 q^{-30} -152 q^{-32} +168 q^{-34} -142 q^{-36} +92 q^{-38} -29 q^{-40} -22 q^{-42} +51 q^{-44} -63 q^{-46} +54 q^{-48} -34 q^{-50} +16 q^{-52} + q^{-54} -8 q^{-56} +10 q^{-58} -10 q^{-60} +6 q^{-62} -3 q^{-64} + q^{-66}$