10 123

From Knot Atlas
Jump to: navigation, search

10 122.gif

10_122

10 124.gif

10_124

Contents

10 123.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 123's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 123 at Knotilus!

10_123 can be depicted with five-fold rotational symmetry (like 5 1).


Quasi-floral decorative knot.
Decorative pentagonal representation.
Symmetrical "flower".
Cylindrical depiction

Knot presentations

Planar diagram presentation X8291 X10,3,11,4 X12,6,13,5 X4,18,5,17 X18,11,19,12 X2,15,3,16 X16,10,17,9 X20,14,1,13 X14,7,15,8 X6,19,7,20
Gauss code 1, -6, 2, -4, 3, -10, 9, -1, 7, -2, 5, -3, 8, -9, 6, -7, 4, -5, 10, -8
Dowker-Thistlethwaite code 8 10 12 14 16 18 20 2 4 6
Conway Notation [10*]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

10 123 ML.gif 10 123 AP.gif
[{3, 10}, {2, 8}, {9, 7}, {8, 11}, {10, 6}, {7, 12}, {11, 4}, {5, 3}, {4, 1}, {6, 2}, {12, 5}, {1, 9}]

[edit Notes on presentations of 10 123]


Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 2
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index 2
Maximal Thurston-Bennequin number [-6][-6]
Hyperbolic Volume 17.0857
A-Polynomial See Data:10 123/A-polynomial

[edit Notes for 10 123's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 0
Topological 4 genus 0
Concordance genus 0
Rasmussen s-Invariant 0

[edit Notes for 10 123's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^4-6 t^3+15 t^2-24 t+29-24 t^{-1} +15 t^{-2} -6 t^{-3} + t^{-4}
Conway polynomial z^8+2 z^6-z^4-2 z^2+1
2nd Alexander ideal (db, data sources) \left\{t^4-3 t^3+3 t^2-3 t+1\right\}
Determinant and Signature { 121, 0 }
Jones polynomial -q^5+5 q^4-10 q^3+15 q^2-19 q+21-19 q^{-1} +15 q^{-2} -10 q^{-3} +5 q^{-4} - q^{-5}
HOMFLY-PT polynomial (db, data sources) z^8-a^2 z^6-z^6 a^{-2} +4 z^6-2 a^2 z^4-2 z^4 a^{-2} +3 z^4+a^2 z^2+z^2 a^{-2} -4 z^2+2 a^2+2 a^{-2} -3
Kauffman polynomial (db, data sources) 4 a z^9+4 z^9 a^{-1} +10 a^2 z^8+10 z^8 a^{-2} +20 z^8+10 a^3 z^7+14 a z^7+14 z^7 a^{-1} +10 z^7 a^{-3} +5 a^4 z^6-11 a^2 z^6-11 z^6 a^{-2} +5 z^6 a^{-4} -32 z^6+a^5 z^5-15 a^3 z^5-38 a z^5-38 z^5 a^{-1} -15 z^5 a^{-3} +z^5 a^{-5} -5 a^4 z^4-3 a^2 z^4-3 z^4 a^{-2} -5 z^4 a^{-4} +4 z^4+5 a^3 z^3+21 a z^3+21 z^3 a^{-1} +5 z^3 a^{-3} +6 a^2 z^2+6 z^2 a^{-2} +12 z^2-2 a z-2 z a^{-1} -2 a^2-2 a^{-2} -3
The A2 invariant -q^{14}+3 q^{12}-2 q^{10}+3 q^8-3 q^4+4 q^2-5+4 q^{-2} -3 q^{-4} +3 q^{-8} -2 q^{-10} +3 q^{-12} - q^{-14}
The G2 invariant q^{80}-4 q^{78}+10 q^{76}-20 q^{74}+26 q^{72}-25 q^{70}+10 q^{68}+30 q^{66}-80 q^{64}+140 q^{62}-180 q^{60}+158 q^{58}-71 q^{56}-100 q^{54}+308 q^{52}-473 q^{50}+528 q^{48}-391 q^{46}+69 q^{44}+343 q^{42}-693 q^{40}+822 q^{38}-656 q^{36}+239 q^{34}+267 q^{32}-647 q^{30}+750 q^{28}-495 q^{26}+29 q^{24}+435 q^{22}-675 q^{20}+551 q^{18}-133 q^{16}-414 q^{14}+836 q^{12}-944 q^{10}+710 q^8-173 q^6-472 q^4+970 q^2-1165+970 q^{-2} -472 q^{-4} -173 q^{-6} +710 q^{-8} -944 q^{-10} +836 q^{-12} -414 q^{-14} -133 q^{-16} +551 q^{-18} -675 q^{-20} +435 q^{-22} +29 q^{-24} -495 q^{-26} +750 q^{-28} -647 q^{-30} +267 q^{-32} +239 q^{-34} -656 q^{-36} +822 q^{-38} -693 q^{-40} +343 q^{-42} +69 q^{-44} -391 q^{-46} +528 q^{-48} -473 q^{-50} +308 q^{-52} -100 q^{-54} -71 q^{-56} +158 q^{-58} -180 q^{-60} +140 q^{-62} -80 q^{-64} +30 q^{-66} +10 q^{-68} -25 q^{-70} +26 q^{-72} -20 q^{-74} +10 q^{-76} -4 q^{-78} + q^{-80}