10 132

From Knot Atlas
Jump to: navigation, search

10 131.gif

10_131

10 133.gif

10_133

Contents

10 132.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 132's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 132 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X8493 X5,12,6,13 X15,18,16,19 X9,16,10,17 X17,10,18,11 X13,20,14,1 X19,14,20,15 X11,6,12,7 X2837
Gauss code 1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7
Dowker-Thistlethwaite code 4 8 -12 2 -16 -6 -20 -18 -10 -14
Conway Notation [23,3,2-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

10 132 ML.gif 10 132 AP.gif
[{3, 10}, {2, 4}, {1, 3}, {13, 11}, {10, 12}, {11, 8}, {7, 9}, {8, 5}, {4, 6}, {5, 7}, {6, 13}, {12, 2}, {9, 1}]

[edit Notes on presentations of 10 132]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][-1]
Hyperbolic Volume 4.05686
A-Polynomial See Data:10 132/A-polynomial

[edit Notes for 10 132's three dimensional invariants] 10 132 is a very interesting knot from the point of view of contact geometry. In particular, it is a transversely nonsimple knot, and it was the last knot with at most 10 crossings for which the maximal Thurston-Bennequin number was calculated.

Four dimensional invariants

Smooth 4 genus 1
Topological 4 genus 1
Concordance genus 2
Rasmussen s-Invariant 2

[edit Notes for 10 132's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^2-t+1- t^{-1} + t^{-2}
Conway polynomial z^4+3 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 5, 0 }
Jones polynomial  q^{-2} + q^{-4} - q^{-5} + q^{-6} - q^{-7}
HOMFLY-PT polynomial (db, data sources) -z^2 a^6-2 a^6+z^4 a^4+4 z^2 a^4+3 a^4
Kauffman polynomial (db, data sources) a^6 z^8+a^4 z^8+a^7 z^7+2 a^5 z^7+a^3 z^7-6 a^6 z^6-6 a^4 z^6-6 a^7 z^5-12 a^5 z^5-6 a^3 z^5+10 a^6 z^4+10 a^4 z^4+10 a^7 z^3+19 a^5 z^3+9 a^3 z^3-6 a^6 z^2-7 a^4 z^2-a^2 z^2-5 a^7 z-8 a^5 z-4 a^3 z-a z+2 a^6+3 a^4
The A2 invariant -q^{22}-q^{20}-q^{18}+q^{14}+q^{12}+2 q^{10}+q^8+q^6
The G2 invariant q^{108}+q^{104}-q^{100}-q^{92}-q^{90}-q^{86}-q^{84}-q^{82}-2 q^{80}-q^{78}-q^{76}-2 q^{74}-q^{68}-q^{64}+q^{62}+q^{60}+q^{58}+q^{56}+q^{54}+2 q^{52}+3 q^{50}+q^{48}+q^{46}+2 q^{44}+q^{42}+2 q^{40}+q^{38}+q^{34}+q^{32}-q^{28}+q^{26}-q^{24}-q^{18}+q^{16}-q^{12}+q^4-q^2+1+ q^{-6} - q^{-8}