10 157

From Knot Atlas
Jump to: navigation, search

10 156.gif

10_156

10 158.gif

10_158

Contents

10 157.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 157's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 157 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X10,4,11,3 X16,11,17,12 X7,15,8,14 X15,9,16,8 X13,1,14,20 X19,13,20,12 X18,6,19,5 X2,10,3,9 X4,18,5,17
Gauss code -1, -9, 2, -10, 8, 1, -4, 5, 9, -2, 3, 7, -6, 4, -5, -3, 10, -8, -7, 6
Dowker-Thistlethwaite code 6 -10 -18 14 -2 -16 20 8 -4 12
Conway Notation [-3:20:20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

10 157 ML.gif 10 157 AP.gif
[{4, 10}, {6, 9}, {5, 8}, {3, 6}, {11, 4}, {9, 2}, {10, 7}, {8, 3}, {7, 1}, {2, 11}, {1, 5}]

[edit Notes on presentations of 10 157]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 2
Maximal Thurston-Bennequin number [3][-13]
Hyperbolic Volume 12.6653
A-Polynomial See Data:10 157/A-polynomial

[edit Notes for 10 157's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 2
Topological 4 genus 2
Concordance genus 3
Rasmussen s-Invariant 4

[edit Notes for 10 157's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^3+6 t^2-11 t+13-11 t^{-1} +6 t^{-2} - t^{-3}
Conway polynomial -z^6+4 z^2+1
2nd Alexander ideal (db, data sources) \{7,t+1\}
Determinant and Signature { 49, 4 }
Jones polynomial q^{10}-4 q^9+6 q^8-8 q^7+9 q^6-8 q^5+7 q^4-4 q^3+2 q^2
HOMFLY-PT polynomial (db, data sources) -z^6 a^{-6} +2 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +5 z^2 a^{-4} -2 z^2 a^{-6} +z^2 a^{-8} +2 a^{-4} - a^{-8}
Kauffman polynomial (db, data sources) z^8 a^{-6} +z^8 a^{-8} +z^7 a^{-5} +5 z^7 a^{-7} +4 z^7 a^{-9} +2 z^6 a^{-6} +8 z^6 a^{-8} +6 z^6 a^{-10} +z^5 a^{-5} -3 z^5 a^{-7} +4 z^5 a^{-11} +3 z^4 a^{-4} -3 z^4 a^{-6} -15 z^4 a^{-8} -8 z^4 a^{-10} +z^4 a^{-12} -2 z^3 a^{-5} -6 z^3 a^{-7} -8 z^3 a^{-9} -4 z^3 a^{-11} -5 z^2 a^{-4} +7 z^2 a^{-8} +2 z^2 a^{-10} +4 z a^{-7} +4 z a^{-9} +2 a^{-4} - a^{-8}
The A2 invariant 2 q^{-6} - q^{-8} +2 q^{-10} +3 q^{-16} - q^{-18} +2 q^{-20} -2 q^{-22} - q^{-24} -2 q^{-28} + q^{-30}
The G2 invariant  q^{-28} -2 q^{-32} +12 q^{-34} -18 q^{-36} +19 q^{-38} -9 q^{-40} -10 q^{-42} +42 q^{-44} -60 q^{-46} +66 q^{-48} -44 q^{-50} -4 q^{-52} +56 q^{-54} -96 q^{-56} +101 q^{-58} -67 q^{-60} +7 q^{-62} +49 q^{-64} -79 q^{-66} +74 q^{-68} -31 q^{-70} -19 q^{-72} +61 q^{-74} -66 q^{-76} +37 q^{-78} +18 q^{-80} -70 q^{-82} +105 q^{-84} -99 q^{-86} +61 q^{-88} +4 q^{-90} -72 q^{-92} +119 q^{-94} -134 q^{-96} +99 q^{-98} -38 q^{-100} -37 q^{-102} +85 q^{-104} -102 q^{-106} +73 q^{-108} -17 q^{-110} -38 q^{-112} +64 q^{-114} -58 q^{-116} +13 q^{-118} +43 q^{-120} -81 q^{-122} +85 q^{-124} -51 q^{-126} +52 q^{-130} -83 q^{-132} +85 q^{-134} -59 q^{-136} +20 q^{-138} +14 q^{-140} -40 q^{-142} +45 q^{-144} -34 q^{-146} +22 q^{-148} -5 q^{-150} -4 q^{-152} +8 q^{-154} -10 q^{-156} +6 q^{-158} -3 q^{-160} + q^{-162}